K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

a) Chứng minh được MN//PQ (cùng vuông góc với AC). Chứng minh được MP = QN. Þ ĐPCM.

b) Ta có:

S M N E = 1 2 S M E N C , S N P E = 1 2 S P B N E , S P Q E = 1 2 S , A P E Q S M Q E = 1 2 S Q E M D ⇒ S M N P Q = 1 2 S A B C S .  

c) Chu vi MNPQ = MN + PQ + NP  + QM

= EC + AE + BE + ED = AC + BE + ED.

Trong tam giác BED, BE + ED ³ BD

Þ Chu vi MNPQ ≥ AC + BD

Þ E là tâm của hình vuông ABCD

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) i) \(ABCD\) là hình thang cân (gt)

\( \Rightarrow \widehat A = \widehat B\) (1) và \(DC\) // \(AE\)

Vì \(AD\;{\rm{//}}\;CE\) (gt)

\(\widehat A = \widehat {CEB}\) (cặp góc đồng vị)  (2)

Từ (1) và (2) suy ra: \(\widehat {CEB} = \widehat B\)

Suy ra \(\Delta CEB\) là tam giác cân.

ii) \(\Delta CEB\) cân tại \(C\) (cmt)

Suy ra: \(CE = BC\) (3)

Xét \(\Delta ADE\) và \(\Delta CED\) ta có:

\(\widehat {{\rm{ADE}}} = \widehat {{\rm{CED}}}\) (\(AD\)// \(CE\), cặp góc so le trong)

\(DE\) chung

\(\widehat {{\rm{AED}}} = \widehat {{\rm{CDE}}}\) (\(CD\) // \(AB\), cặp góc so le trong)

Suy ra: \(\Delta ADE = \Delta CED\) (g-c-g)

Suy ra: \(AD = CE\) (4)

Từ (3) và (4) suy ra: \(AD = BC\)

b) Chứng minh tương tự như ý a) ta có: Hình thang cân \(MNPQ\) có hai cạnh bên \(MQ = NP\)

Xét tam giác \(\Delta MQP\) và \(\Delta NPQ\) ta có:

\(MQ = NP\) (cmt)

\(\widehat {{\rm{MQP}}} = \widehat {{\rm{NPQ}}}\) (do \(MNPQ\) là hình thang cân)

\(PQ\) chung

Suy ra: \(\Delta MQP = \Delta NPQ\) (c-g-c)

\( \Rightarrow MP = NQ\) (hai cạnh tương ứng)

3 tháng 7 2019

con cu khổng lồ