\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Đặt: \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}a+b+c=2\\2ab-c^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left(a+b+c\right)^2-2ab+c^2=0\)

\(\Leftrightarrow a^2+b^2+2bc+2ac+2c^2=0\)

\(\Leftrightarrow\left(a^2+c^2+2ac\right)+\left(b^2+c^2+2bc\right)=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\Leftrightarrow a=b=-c\Leftrightarrow x=y=-z\)

Giải tiếp nhé

NV
18 tháng 3 2019

\(\left(\frac{1}{x}+\frac{1}{y}\right)^2=\left(2-\frac{1}{z}\right)^2\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\frac{1}{z^2}=4-\frac{4}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}-\frac{4}{x}-\frac{4}{y}=-8\)

\(\Leftrightarrow\frac{1}{x^2}-\frac{4}{x}+4+\frac{1}{y^2}-\frac{4}{y}+4=0\Leftrightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x}-2=0\\\frac{1}{y}-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\) \(\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=\frac{-1}{2}\)

Vậy \(P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2012}=1^{2012}=1\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)

=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)

=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)

\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)

Từ (1) và (2) suy ra

\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)

=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)

à thêm cái này nữa. Sorry viết thiếu

Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)

lúc đó  \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)

9 tháng 3 2021

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)

\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{z}=0\\\frac{1}{y}+\frac{1}{z}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{x}=\frac{1}{-z}\\\frac{1}{y}=\frac{1}{-z}\end{cases}\Leftrightarrow}\frac{1}{x}=\frac{1}{y}=\frac{1}{-z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Leftrightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\)

\(\Leftrightarrow z=\frac{-1}{2}\)

\(x=y=\frac{1}{2}\)

\(\Rightarrow C=\left(x+2y+z\right)^{2021}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2021}=1\)

9 tháng 3 2021

Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)

\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\\\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{cases}}}\)

\(\Leftrightarrow x=y=-z\)

Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)ta được :

\(x=y=\frac{1}{2};z=-\frac{1}{2}\)

\(\Rightarrow P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2020}=1\)

5 tháng 9 2020

=56 phân số bất đồng trị của a+b

5 tháng 9 2020

chắc câu này a đăng lên cho vui :vv

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2< =>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2=4\)

\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\left(\frac{2}{xy}-\frac{1}{z^2}\right)+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}+4=4\)

\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4-4\)

\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)

\(< =>\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(< =>\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0< =>\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)

\(< =>x=y=-z\)Thế vào giả thiết ta được : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(< =>\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2< =>\frac{-1}{z}+\frac{-1}{z}+\frac{1}{z}=2\)

\(< =>\frac{-1-1+1}{z}=2< =>2z=-1< =>z=-\frac{1}{2}\)

Suy ra \(x=y=-z=-\left(-\frac{1}{2}\right)=\frac{1}{2}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Nên \(P=\left(x+2y+z\right)^{2019}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)

6 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

8 tháng 2 2019

-cách này khá dài dòng _._ (ko nghĩ đc cách ngắn hơn >: )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow\hept{\begin{cases}-x.\left(y+z\right)=yz\\-y.\left(x+z\right)=xz\\-z.\left(x+y\right)=xy\end{cases}}\)

thay vào biểu thức P, ta có:

\(P=\left[\frac{-z.\left(y+x\right)}{z^2}+\frac{-x.\left(y+z\right)}{x^2}+\frac{-y.\left(x+z\right)}{y^2}-2\right]^{2013}\)

\(P=\left[\frac{-\left(y+x\right)}{z}+\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}-2\right]^{2013}\)

\(P=\left(\frac{-x^2y-xy^2-zy^2-yz^2-zx^2-xz^2}{xyz}-\frac{2xyz}{xyz}\right)^{2013}\)

\(P=\left[\left(\frac{-x^2y-zx^2}{xyz}\right)+\left(\frac{-xy^2-zy^2}{xyz}\right)+\left(\frac{-z^2y-xz^2}{xyz}\right)\right]\)

\(\text{Ta có: }-x^2y-zx^2=-x^2.\left(y+z\right),\text{mà }-x.\left(y+z\right)=yz\Rightarrow-x^2.\left(y+z\right)=xyz\)

tương tự: \(-xy^2-zy^2=xyz\text{ và }-z^2y-z^2x=xyz\)

\(\Rightarrow P=\left(\frac{3xyz-2xyz}{xyz}\right)^{2013}=1^{2013}=1\)

8 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\Rightarrow x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\) (cách cm   Câu hỏi của Arthur Conan Doyle - Toán lớp 8 - Học toán với OnlineMath)

Vậy\(P=\left(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}-2\right)^{2013}=\left(\frac{x^3y^3+y^3z^3+z^3x^3}{x^2y^2z^2}-2\right)^{2013}=\left(3-2\right)^{2013}=1\)