K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Lời giải:

Đặt \((x,y,z)=(a+1,b+1,c+1)⇒a,b,c≥0\)

Ta có:

\(3x^2+4y^2+5z^2=52\)

\(⇔3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)

\(⇔3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(⇔5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)

Do đó \(x+y+z=a+b+c+3≥5\)

Vậy Fmin\(=5⇔x=y=1,z=3\)

28 tháng 12 2019

Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)

Ta có : 

\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)

\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)

\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)

Do đó \(x+y+z=a+b+c+3\ge5\)

Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)

Chúc bạn học tốt !!!

28 tháng 12 2019

Bớt copppy đưa link tử tế cái :)))):

Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...

Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net

Search mạng đầy vler :333

9 tháng 11 2018

make friends with yourself ^^

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

16 tháng 7 2021

lại bị trùng rồi quỳnh ơi , https://olm.vn/hoi-dap/detail/76355556031.html

DD
16 tháng 7 2021

Câu hỏi của Con Heo - Toán lớp 8 - Học trực tuyến OLM

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

13 tháng 10 2019

\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)

\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)

\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

18 tháng 4 2020

h2r r1000

27 tháng 11 2019

sai đè nha:4\(\sqrt{yz}\)

27 tháng 11 2019

cây gì lớn nhất hành tinh