Cho các số thực x,y không âm thỏa mãn điều kiện 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

28 tháng 6 2021

a) Ta có:

\(\sqrt{\frac{289}{225}}=\sqrt{\frac{\sqrt{289}}{\sqrt{225}}}=\sqrt{\frac{17^2}{15^2}}=\frac{17}{15}\)

b) Ta có:

\(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\frac{\sqrt{64}}{\sqrt{25}}}=\sqrt{\frac{8^2}{5^2}}=\frac{8}{5}\)

c) Ta có:

\(\sqrt{\frac{0,25}{9}}=\sqrt{\frac{\sqrt{0,25}}{\sqrt{9}}}=\sqrt{\frac{0,5^2}{3^2}}=\frac{0,5}{3}=\frac{1}{6}\)

d) Ta có:

\(\sqrt{\frac{8,1}{1,6}}=\sqrt{\frac{81.0,1}{16.0,1}}=\sqrt{\frac{81}{16}}=\sqrt{\frac{\sqrt{81}}{\sqrt{16}}}=\sqrt{\frac{9^2}{4^2}}=\frac{9}{4}\)

28 tháng 6 2021

a)Ta có: \(\sqrt{\frac{289}{225}}=\frac{\sqrt{289}}{\sqrt{225}}=\frac{17}{15}\)

b) Ta có: \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{\sqrt{64}}{\sqrt{25}}=\frac{8}{5}\)

c) Ta có: \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{6}\)

d)Ta có : \(\sqrt{\frac{8,1}{1,6}}=\frac{\sqrt{8,1}}{\sqrt{1,6}}=\frac{\sqrt{8,1}.100}{\sqrt{1,6}.100}=\frac{\sqrt{81}}{\sqrt{16}}=\frac{9}{4}\)

DD
3 tháng 7 2021

Trong các hàm số trên, các hàm số bậc nhất là: 

\(y=25\left(x+5\right),y=\frac{10x+7}{9}\).

8 tháng 9 2021

Con cai nit 💓💖❣💌💌💤