Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:
\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)
Chứng minh tương tự, cộng lại ta có đpcm.
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
@Nk>↑@ Vũ Minh Tuấn Băng Băng 2k6 Nguyễn Văn Đạt tth Lê Tài Bảo Châu Aki Tsuki Lê Thị Thục Hiền Nguyễn Thị Diễm Quỳnh HISINOMA KINIMADO
Giúp em vs mn ơi
Akai HarumaPhạm Minh QuangtthVũ Minh Tuấn giup voi a
nhìn đề thấy là lạ, a xem lại coi có đúng ko?