Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)
CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)
\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)
Từ (1); (2) và (3) =>A = \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)
Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)
cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)
Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)
\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)
\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{y^4+xz}\le\frac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\frac{z^2}{z^4+xy}\le\frac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{cases}}\)
\(\Rightarrow VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
Chứng minh rằng :
\(2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\frac{3}{4}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)
\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)
\(\Rightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\frac{x^2}{4x^2\sqrt{yz}}=\frac{1}{4\sqrt{yz}}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\frac{1}{4\sqrt{xz}}\\\frac{z^2}{\left(z^2+\sqrt{zy}\right)^2}\le\frac{1}{4\sqrt{xy}}\end{cases}}\)
\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\)
\(\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{xz}\right)\)
Chứng minh rằng : \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)
Theo đề bài ta có : \(x^2+y^2+z^2=3xyz\)
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=3\)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)
\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{x}+\frac{1}{y}}{2}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{1}{\sqrt{xz}}\le\frac{\frac{1}{x}+\frac{1}{z}}{2}\\\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{z}+\frac{1}{y}}{2}\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{x}{yz}+\frac{y}{xz}\ge2\sqrt{\frac{1}{z^2}}=\frac{2}{z}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y}{xz}+\frac{z}{xy}\ge\frac{2}{x}\\\frac{x}{zy}+\frac{z}{xy}\ge\frac{2}{y}\end{cases}}\)
\(\Rightarrow2\left(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\right)\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\left(đpcm\right)\)
Vậy \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)
\(\Rightarrow2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)
Mà \(VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
\(\Rightarrow VT\le\frac{3}{2}\) ( đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
\(\text{Σ}\frac{x^2}{x^4+yz}\le\text{Σ}\frac{x^2}{2x^2\sqrt{yz}}=\text{Σ}\frac{1}{2\sqrt{yz}}\le\text{Σ}\frac{\frac{1}{y}+\frac{1}{z}}{4}=\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{2}=\frac{\frac{xy+yz+xz}{xyz}}{2}=\frac{\frac{3\left(xy+yz+xz\right)}{x^2+y^2+z^2}}{2}\)(1)
Dễ dàng CM được: \(x^2+y^2+z^2\ge xy+yz+xz\)
Thay vào (1) -> dpcm
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
mình nhầm :) làm lại nhé
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
\(\frac{x}{3-yz}+\frac{y}{3-zx}+\frac{z}{3-xy}\le\frac{x}{3-\frac{y^2+z^2}{2}}+\frac{y}{3-\frac{z^2+x^2}{2}}+\frac{z}{3-\frac{x^2+y^2}{2}}\)
\(=\frac{2x}{3+x^2}+\frac{2y}{3+y^2}+\frac{2z}{3+z^2}\le\frac{2x}{4\sqrt[4]{x^2}}+\frac{2y}{4\sqrt[4]{y^2}}+\frac{2z}{4\sqrt[4]{z^2}}\)
\(=\frac{\sqrt{x}}{2}+\frac{\sqrt{y}}{2}+\frac{\sqrt{z}}{2}\le\frac{x^2+3}{8}+\frac{y^2+3}{8}+\frac{z^2+3}{8}\)
\(=\frac{3}{8}+\frac{9}{8}=\frac{3}{2}\)
cách khác: cũng đến chỗ <= sigma 2x/3+x^2
<= 2x/2(x+1) (do x^2+3=x^2+1+2>=2x+2) <= sigma x/x+1 = 3- sigma (1/x+1)
sigma 1/x+1 >= 9/x+y+z+3 dễ rồi
Áp dụng BĐT Cô-si,ta có :
x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\); \(y^4+xz\ge2y^2\sqrt{xz}\); \(z^4+xy\ge2z^2\sqrt{xy}\)
\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)
\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z = 1