K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Ta co:

\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)

\(=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\left(ab+bc+ca\right)\le\text{ }\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}\)

\(\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}=\frac{\left(a+b+c\right)^6}{27}=\frac{3^6}{27}=27\)

Dau '=' xay ra khi \(a=b=c=1\)

7 tháng 12 2017

Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)

\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)

Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)                       \(\left(1\right)\)

Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)

\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)

\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)              (Do a2+b2+c2=1)                           \(\left(2\right)\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)   Tự chứng minh                                                               \(\left(3\right)\)

Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)

Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)

13 tháng 7 2019

Mình chịu 

13 tháng 7 2019

\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương ) 

\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

... 

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

NV
10 tháng 6 2021

Bài này đã có ở đây:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

11 tháng 8 2020

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Đây nha! Vô tcn xem ảnh!