Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a 2 + b 2 ≥ 2 a b , b 2 + c 2 ≥ 2 b c , c 2 + a 2 ≥ 2 c a
Do đó: 2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9
Dấu bằng xảy ra khi a = b = c = 3 . Vậy MinP= 9 khi a = b = c = 3
Vì a , b , c ≥ 1 , nên ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b
Tương tự ta có b c + 1 ≥ b + c , c a + 1 ≥ c + a
Do đó a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6
Mà P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18
⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
Vậy maxP= 18 khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
Áp dụng AM-GM có:
\(2a^2+2b^2\ge4ab\)
\(8b^2+\dfrac{1}{2}c^2\ge4bc\)
\(8a^2+\dfrac{1}{2}c^2\ge4ac\)
Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)
Lời giải:
Tìm min:
Theo BĐT AM-GM thì: $P=a^2+b^2+c^2\geq ab+bc+ac$ hay $P\geq 9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $a=b=c=\sqrt{3}$
-----------
Tìm max:
$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=(a+b+c)^2-18$
Vì $a,b,c\geq 1$ nên:
$(a-1)(b-1)\geq 0\Leftrightarrow ab+1\geq a+b$
Hoàn toàn tương tự: $bc+1\geq b+c; ac+1\geq a+c$
Cộng lại: $2(a+b+c)\leq ab+bc+ac+3=12$
$\Rightarrow a+b+c\leq 6$
$\Rightarrow P=(a+b+c)^2-18\leq 6^2-18=18$
Vậy $P_{\max}=18$. Giá trị này đạt tại $(a,b,c)=(1,1,4)$ và hoán vị
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
các bạn ơi làm hộ mình với