Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2+4b=b^2+4a
=> (a-b)(a+b)-4(a+b)=0
=>(a-b-4)(a+b)=0
Đến đây đơn giản mà ^^ em ko làm được thì ib nhé.
Bài làm:
Ta có: \(a^2+4b=b^2+4a\)
\(\Leftrightarrow\left(a^2-b^2\right)-\left(4a-4b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a+b-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=0\\a+b=4\end{cases}}\)
+ Nếu \(a=0\Rightarrow4b=7\Leftrightarrow b=\frac{7}{4}\)
Thay vào tính được:
a) \(S=a+b=0+\frac{7}{4}=\frac{7}{4}\)
b) \(Q=a^3+b^3=0^3+\left(\frac{7}{4}\right)^3=\frac{343}{64}\)
+ Nếu \(a+b=4\Rightarrow b=4-a\)
Thay vào tính được:
a) \(S=a+b=4\)
b) \(b=4-a\Leftrightarrow a^2+4\left(4-a\right)=7\)
\(\Leftrightarrow a^2-4a+9=0\)
\(\Leftrightarrow\left(a-2\right)^2+5=0\)
\(\Rightarrow∄a\)
\(a^2+4b=a^2+4a\Leftrightarrow a^2-b^2+4b-4a=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Rightarrow a+b-4=0\Rightarrow a+b=4\)
b/ \(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=4^3-12ab=64-12ab\)
Lại có: \(\left\{{}\begin{matrix}a^2+4b=7\\b^2+4a=7\end{matrix}\right.\) \(\Rightarrow a^2+b^2+4\left(a+b\right)=14\)
\(\Rightarrow\left(a+b\right)^2-2ab+4\left(a+b\right)=14\)
\(\Rightarrow16-2ab+16=14\Rightarrow ab=9\)
\(\Rightarrow Q=64-12.8=-32\)
Ta có : \(a^2+3a=b^2+3b=2=>a^2+3a-b^2-3b=0\)
\(=>\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)
\(=>\left(a-b\right)\left(a+b+3\right)=0\)
\(=>\orbr{\begin{cases}a-b=0\\a+b+3=0\end{cases}=>\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}}=>\orbr{\begin{cases}a+b=2a=2b\\a+b=-3\end{cases}}\)
\(a^2+3a=b^2+3b=2\)
\(\Rightarrow a^2+3a-b^2-3b=0\)
\(\Rightarrow\left(a-b\right).\left(a+b\right)+3.\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right).\left(a+b+3\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}\)
Vì a,b là các số thực phân biệt => a+b=-3
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
\(a+b=4ab\le\left(a+b\right)^2\)
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a^2}{4b^2a+a}+\frac{b^2}{4a^2b+b}\)
\(\ge\frac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)^2}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)
Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)
\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.
Ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)
Khi đó:
\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)
Tương tự:
\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)
\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=b=c=1\)
P/S:Is that true ??
Ta có: \(a^2+4b=b^2+4a\) <=> \(a^2-b^2-4a+4b=0\)
<=> \(\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
<=> \(\left(a-b\right)\left(a+b-4\right)=0\)
<=> \(\orbr{\begin{cases}a=b\left(loại\right)\\a+b=4\end{cases}}\)(vì a,b phân biệt)
a ) => S = a + b = 4
b) Ta có: \(a^2+4b=7\) <=> \(a\left(a+b\right)-ab+4b=7\)
<=> \(4a-ab+4b=7\) <=> \(4\left(a+b\right)-7=ab\) <=> \(ab=4.4-7=9\)
Do đó: Q = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b) = 43 - 3.9.4 = -44