K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PV
1
13 tháng 9 2018
Mình ko biết giải, tóm tắt giúp đề bài như sau:
c/d < a/b
C/m: c/d < (c+na)/(d+nb) < a/b
13 tháng 6 2018
Ta có a/b<c/d
=> ad<bc
=>ad+ab<bc+ab
=> a(b+d)<b(c+a)
=>a/b<a+c/b+d
Lại có ad<bc
=> ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d
SI
7 tháng 9 2020
bạn ơi tại sao lại là thế mik tưởng là a nhân b cộng a nhân d chứ
NT
0
\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(*)
Mặt khác: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)
Chú ý ta có được các kết quả trên nhờ vào bổ đề: \(\frac{x}{y}< \frac{x+m}{y+m}\left(x,y,m\inℕ^∗,x< y\right)\)
Từ (*) và (**) suy ra đpcm.