K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2020

\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(*)

Mặt khác: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)

Chú ý ta có được các kết quả trên nhờ vào bổ đề: \(\frac{x}{y}< \frac{x+m}{y+m}\left(x,y,m\inℕ^∗,x< y\right)\)

Từ (*) và (**) suy ra đpcm.

13 tháng 9 2018

Mình ko biết giải, tóm tắt giúp đề bài như sau:

c/d < a/b

C/m: c/d < (c+na)/(d+nb) < a/b

13 tháng 6 2018

Ta có a/b<c/d 

=> ad<bc

=>ad+ab<bc+ab

=> a(b+d)<b(c+a)

=>a/b<a+c/b+d

Lại có ad<bc

=> ad+cd<bc+cd

=>d(a+c)<c(b+d)

=>a+c/b+d<c/d

7 tháng 9 2020

bạn ơi tại sao lại là thế mik tưởng là a nhân b cộng a nhân d chứ

15 tháng 3 2021

làm ơn