Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)
mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> \(a\left(a-1\right)\left(a+1\right)⋮6\)
tương tự : \(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
=> (*) chia hếtcho 6
\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6
mà theo bài ra ta có: \(a+b+c⋮6\)
nên \(a^3+b^3+c^3⋮6\) => đpcm
ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.
ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.
ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.
do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)
A= 3a+ 12b+ 10a+ b.
A= 13a+ 13b\(⋮\) 13.
=> A\(⋮\) 13.
Vì 10a+ b\(⋮\) 13.
=> 3( a+ 4b)\(⋮\) 13.
Mà 3 không\(⋮\) 13.
=> a+ 4b\(⋮\) 13.
Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.
Chúc bạn học tốt!
\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)
Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6
=> S chia hết cho 6
=> dpcm