K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

câu này ở thi toán giữa kì 2 nè

25 tháng 1 2016

Sao bạn ko trả nick cho Tâm?

25 tháng 1 2016

xét hiệu : 5(2a+3b) - 3(9a+5b) = 10a+ 15b - 27a-15b

<=> 5(2a+3b) - 3(9a+5b)         = -17a

vì -17 chia hết cho17 nên -17a chia hết cho 17

=> 5(2a+3b) - 3(9a+5b) chia hết cho 17                         (1)

+) ta có:  2a + 3b chia hết cho 17

nên 5(2a+3b) chia hết cho 17              (2)

từ (1) và (2) => 3(9a+5b) chia hết cho 17

mà (3,17) = 1

=> 9a+5b chia hết cho 17

vậy nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho17              

+) ngược lại ta có 9a+5b chia hết cho17

nên 3(9a+5b) chia hết cho17             (3)

từ (1) và (3) =>   5(2a+3b) chia hết cho 17

mà (5,17)=1

=> 2a+3b chia hết cho 17

vậy nếu 9a+5b chia hết cho17 thì 2a+3b chia hết cho17

chứng tỏ nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho 17 và ngược lại

 

 

 


 

25 tháng 1 2016

Xét tổng: 4(2a + 3b) + (9a + 5b) = 8a + 12b + 9a + 5b = 17a + 17b = 179a + b0 chia hết cho 17

=> 4(2a + 3b) + (9a + 5b) chia hết cho 17 (1)

+) Chứng minh theo chiều xuôi (tức là có 2a + 3b chia hết cho 17, cần chứng minh 9a + 5b chia hết cho 17)

Ta có: 2a + 3b chia hết cho 17 => 4(2a + 3b) chia hết cho 17, kết hợp vs (1) đc: 9a + 5b chia hết cho 17

+) Chứng minh theo chiều ngược (

tức là có 9a + 5b chia hết cho 17, cần chứng minh 2a + 3b chia hết cho 17)

Ta có: 9a + 5b chia hết cho 17, kết hợp vs (1) đc: 4(2a + 3b) chia hết cho 17, mà ƯCLN(4,17) = 1 => 2a + 3b chia hết cho 17

Vậy: Nếu 2a + 3b chia hết cho 17 thì 9a + 5b chia hết cho 17 và ngược lại

NV
2 tháng 1

- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow8a+5b+7b⋮7\)

Mà \(7b⋮7\) với mọi  b nguyên \(\Rightarrow8a+5b⋮7\)

- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow4\left(2a+3b\right)⋮7\)

Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)

13 tháng 9 2016

gọi ab là xy

6x+11y chia hế

31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿

=> 6x + 42y chia hết cho 31

=> 6﴾x+7y﴿ chia hết cho 31

Vì 6 và 31 nguyên tố cũng nhau nên

x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿ 

14 tháng 2 2016

Xét phép trừ:

10(a + 5b) - (10a + b)

= 10a + 50b - 10a - b

= 49b chia hết cho 7 (1)

+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7  (2)

Từ (1) và (2) => 10a + b chia hết cho 7

+ Nếu 10a + b chia hết cho 7   (3)

Từ (1) và (3) => 10(a + 5b) chia hết cho 7 => a + 5b chia hết cho 7 (Vì (7; 10) = 1)

Vậy a + 5b chia hết cho 7 khi và chỉ khi 10a + b chia hết cho 7

5a+7b chia hết cho 17

=>6(5a+7b) chia hết cho 17

=>30a+42b chia hết cho 17

=>30a+42b-17b chia hết cho 17

=>30a+25b chia hết cho 17

=>5(6a+5b) chia hết cho 17

(5;17)=1 =>6a+5b chia hết cho 17

6a+5b chia hết cho 17

=>5(6a+5b) chia hết cho 17

=>30a+25b chia hết cho 17

=>30a+25b+17b chia hết cho 17

=>30a+42b chia hết cho 17

=>6(5a+7b) chia hết cho 17

=>5a+7b chia hết cho 17

=>đpcm