K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

+)Vì x<y

Suy ra a/b<c/d

Suy ra a.b+a.d<b.c+b.a

Suy ra a.(b+d)<b.(c+a)

Suy ra a/b<c+a/b+d

Suy ra a/b<c+a/b+d<c/d

Suy ra x<z<y

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath

15 tháng 7 2015

ĐỀ sai 

 a = 1 ; b = 4 ; c = 1 ; d = 2 ta có 

 \(\frac{1}{4}

28 tháng 6 2016

Vì \(\frac{a}{b}\) < \(\frac{c}{d}\)  nên ad < bc    (1)

Xét tích : a(b+d) =  ab + ad     (2)

                b(a+c) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)      (4)

Tương tự ta có : \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)         (5)

Kết hợp (4);(5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)   

hay x < z < y

18 tháng 8 2015

cậu tra trên google ấy , **** tớ cái nha !

nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã

19 tháng 10 2021

Giúp e vs ạ mai là nộp rồi

16 tháng 6 2016

Vì \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc     (1)

Xét tích 

a(b+d) = ab + ad       (2)

b(a+c)  = ba + bc        (3)

Từ (1),(2),(3) suy ra 

a(b+d) < b(a+c)  do đó :  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)     (4)

Tương tự ta có \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)    (5)

Từ (4),(5) ta được : \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

Hay x < z < y