K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(\frac{5a+5b-c}{c}=\frac{5b+5c-a}{a}=\frac{5c+5a-b}{b}\)

\(\Leftrightarrow\)\(\frac{5a+5b-c}{c}+1=\frac{5b+5c-a}{a}+1=\frac{5c+5a-b}{b}+1\)

\(\Leftrightarrow\)\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}=\frac{5a+5b+5b+5c+5c+5a}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{5a+5b}{c}=10\)\(\Leftrightarrow\)\(5a+5b=10c\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{5b+5c}{a}=10\)\(\Leftrightarrow\)\(5b+5c=10a\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{5c+5a}{b}=10\)\(\Leftrightarrow\)\(5c+5a=10b\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{16120abc}\) ta được : 

\(P=\frac{2c.2a.2b}{16120abc}=\frac{8abc}{16120abc}=\frac{1}{2015}\)

Vậy \(P=\frac{1}{2015}\)

Chúc bạn học tốt ~ 

7 tháng 12 2016

+ Nếu a+b+c=0 thì a+b=-c; b+c=-a; c+a=-b

P = -c.(-a).(-b)/16120abc = -1/16120

+ Nếu a+b+c khác 0

Áp dung t/c của dãy tỉ số = nhau ta có:

5a+5b-c/c = 5b+5c-a/a = 5c+5a-b/b

= (5a+5b-c)+(5b+5c-a)+(5c+5a-b)/c+a+b

= 9(a+b+c)/a+b+c = 9

=> 5a+5b-c=9c; 5b+5c-a=9a; 5c+5a-b=9b

=> 5a+5b=10c; 5b+5c=10a; 5c+5a=10b

=> a+b=2c; b+c=2a; c+a=2b

P = 2c.2a.2b/16120abc = 1/2015

17 tháng 10 2018

bài này phải xét cả truờng hợp a+b+c=0 vầ+b+ckhác 0 chứ

25 tháng 3 2018

Gợi ý : 
Bước 1 : Cộng 6 vào các hạng tử đã cho ở đề bài 

Bước 2 : xét 2 TH : 
TH1 : a + b + c = 0 

TH2 : a + b + c khác 0 

Chúc học tốt !!!! 

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

27 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có 

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b-c+c=c+c\\a-b+b+c=b+b\\-a+a+b+c=a+a\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}}}\)

Thay các tổng a + b ; a + c ; b + c vào biểu thức M , ta có :

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

21 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\) 

\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)

\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)

Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

19 tháng 6 2019

8 nha !

14 tháng 8 2016

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)                                                                                                                  (Tính chất dãy các tỉ số bằng nhau)                                                                  Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)

9 tháng 10 2019

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

9 tháng 10 2019

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4