Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
\(Q=\frac{x\left(\sqrt{x+zy}-x\right)}{x+yz-x^2}+\frac{y\left(\sqrt{y+zx}-y\right)}{y+zx-y^2}+\frac{z\left(\sqrt{xy+z}-z\right)}{z+xy-z^2}\)
\(=\frac{x\left(\sqrt{x\left(x+y+z\right)+yz}-x\right)}{x\left(x+y+z\right)+yz-x^2}+\frac{y\left(\sqrt{y\left(x+y+z\right)+zx}-y\right)}{y\left(x+y+z\right)-y^2+zx}+\frac{z\left(\sqrt{xy+z\left(x+y+z\right)}-z\right)}{z\left(x+y+z\right)+xy-z^2}\)
\(=\frac{x\left(\sqrt{\left(x+y\right)\left(z+x\right)}-x\right)}{xy+yz+zx}+\frac{y\left(\sqrt{\left(x+y\right)\left(y+z\right)}-y\right)}{xy+yz+zx}+\frac{z\left(\sqrt{\left(y+z\right)\left(z+x\right)}-z\right)}{xy+yz+za}\)
ÁP DỤNG BĐT CÔ-SI TA ĐƯỢC:
\(Q\le\frac{x\left(\frac{x+y+z+x}{2}-x\right)}{xy+zx+yz}+\frac{y\left(\frac{x+y+z+y}{2}-y\right)}{xy+yz+zx}+\frac{z\left(\frac{x+y+z+z}{2}-z\right)}{xy+yz+zx}\)
\(=\frac{xy+zx}{2\left(xy+yz+zx\right)}+\frac{xy+yz}{2\left(xy+yz+zx\right)}+\frac{yz+zx}{2\left(xy+yz+zx\right)}=1\)
DẤU BẰNG XẢY RA \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(x+\sqrt{x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{x^2+yz+x\left(z+y\right)}\)
\(\ge x+\sqrt{2\sqrt{x^2yz}+x\left(y+z\right)}=x+\sqrt{x\cdot2\sqrt{yz}+x\left(y+z\right)}=x+\sqrt{x\left(y+z+2\sqrt{yz}\right)}\)
\(=x+\sqrt{x\left(\sqrt{y}+\sqrt{z}\right)^2}=x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{x+yz}}\le\frac{x}{x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
tương tự :
\(\frac{y}{y+\sqrt{y+xz}}\le\frac{\sqrt{y}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}\)
\(\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}+\sqrt{y}}\)
cộng vế theo vế ta được
\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
dấu "=" xảy tra khi x=y=z=1/3
\(xy+yz+zx\le3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
\(P=\frac{1}{\sqrt{x^2+y^2+x^2+xy}}+\frac{1}{\sqrt{y^2+z^2+y^2+yz}}+\frac{1}{\sqrt{z^2+x^2+z^2+zx}}\)
\(P\le\frac{1}{\sqrt{x^2+3xy}}+\frac{1}{\sqrt{y^2+3yz}}+\frac{1}{\sqrt{z^2+3zx}}=\frac{4}{2\sqrt{4x\left(x+3y\right)}}+\frac{4}{2\sqrt{4y\left(y+3z\right)}}+\frac{1}{2\sqrt{4z\left(z+3x\right)}}\)
\(P\le4\left(\frac{1}{4x+x+3y}+\frac{1}{4y+y+3z}+\frac{1}{4z+z+3x}\right)=4\left(\frac{1}{5x+3y}+\frac{1}{5y+3z}+\frac{1}{5z+3x}\right)\)
\(P\le\frac{4}{64}\left(\frac{5}{x}+\frac{3}{y}+\frac{5}{y}+\frac{3}{z}+\frac{5}{z}+\frac{3}{x}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{3}{2}\)
\(P_{max}=\frac{3}{2}\) khi \(x=y=z=1\)
Ta đặt \(x=tanA;y=tanB;z=tanC\) với \(ABC\) là các góc tam giá từ đây cần c/m
\(sinA+sinB+sinC\le\frac{3\sqrt{3}}{2}\)
tài liệu c/m BĐT này đầy trên mạng bn có thể tham tham khảo
VD:Cm : sinA+sinB+sinC bé hơn hoặc bằng (3* căn3)/2? | Yahoo Hỏi & Đáp
Dự đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta tìm được \(P=\frac{3\sqrt{3}}{2}\)
Ta sẽ chứng minh nó là GTNN
Thật vậy, ta cần chứng minh
\(Σ\frac{1}{\sqrt{x^2+xy+xz+yz}}\le\frac{3\sqrt{3}}{2\sqrt{xy+xz+yz}}\left(xy+yz+xz=1\right)\)
\(\LeftrightarrowΣ\sqrt{x+y}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)
Nhưng theo BĐT Cauchy-Schwarz ta có:
\(\left(Σ\sqrt{x+y}\right)^2\le\left(1+1+1\right)Σ\left(x+y\right)=6\left(x+y+z\right)\)
Như vậy, ta còn phải chứng minh :
\(\sqrt{6\left(x+y+z\right)}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)
\(\Leftrightarrow9\left(x+y\right)\left(x+z\right)\left(y+z\right)\ge8\left(x+y+z\right)\left(xy+xz+yz\right)\)
\(\LeftrightarrowΣz\left(x-y\right)^2\ge0\) luôn đúng. Nên \(P_{Min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Thay \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) ta có
\(1+x=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
Tương tự \(1+y=\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\) và \(1+z=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)
và \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{z}+\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
Do đó P = 2
Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)
\(\Rightarrow\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)
\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)
\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng từng vế của các bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)
\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)
Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)
Theo bài ra ta có:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)
\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự:
\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)
=> ĐPCM
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
Ta có:\(\frac{x}{\sqrt{1+x^2}}=\frac{x}{\sqrt{y\left(x+z\right)+x\left(x+z\right)}}=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\frac{x}{x+y}}.\sqrt{\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự hai BĐT còn lại và cộng theo vế ta thu được:
\(VT\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)
ĐẲng thức xảy ra khi x =y = z=\(\frac{1}{\sqrt{3}}\)
Cảm ơn bạn