\(\le12\)

Tìm GTNN của \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\ge\left(x+y+z\right)^2\left(1\right)\)

Áp dụng Bu-nhi :

\(\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)^2\le\left(xy+yz+xz\right)\left(x+y+z\right)\)

\(\Leftrightarrow x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le24\)
\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\le24P\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\left(x+y+z\right)^2\le24P\)

\(\Rightarrow12^2\le24P\)

\(\Rightarrow P\ge6\)
ĐẾN ĐÂY BẠN TỰ GIẢI DẤU \(=\) XẢY RA LÚC NÀO NHÉ

1 tháng 1 2016

Áp dụng Bu-nhi :

\(12^2<\left(x+y+z\right)^2=\left(\frac{\sqrt{x}}{\sqrt{\sqrt{y}}}.\sqrt{x}.\sqrt{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{\sqrt{z}}}.\sqrt{y}.\sqrt{\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{\sqrt{x}}}.\sqrt{z}.\sqrt{\sqrt{x}}\right)^2\)
\(\le\left(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\right)\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\)

7 tháng 1 2016

Ta có: \(P^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{2a\sqrt{b}}{\sqrt{c}}+\frac{2b\sqrt{c}}{\sqrt{a}}+\frac{2c\sqrt{a}}{\sqrt{b}}\). Áp dụng BĐT Cauchy cho 4 số dương ta có:

\(\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a;\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{\sqrt{a}}+a\ge4b;\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\)

\(\Rightarrow P^2\ge3\left(a+b+c\right)\ge3.12=36\Rightarrow P\ge6\)

Xảy ra đẳng thức khi và chỉ khi a = b = c = 4

2 tháng 1 2020

Mn ơi chỉ cần làm câu b thôi nha. Câu a mk làm đk r. ak mk nhắc tí câu b là sử dụng kết quả của câu a nha. Mk viết thế để mn dễ lm hơn.

2 tháng 1 2020

\(P=\Sigma\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\Sigma\frac{1}{\sqrt{2.\frac{\left(a+b\right)^2}{2}}+4}=\Sigma\frac{1}{a+b+4}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{a+2}+\frac{1}{b+2}\right)=\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)

Dấu "=" xảy ra khi a=b=c=1 

27 tháng 9 2016

Áp dụng BĐT Cô-si cho 2 số dương ta có:

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(1\right)\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\left(2\right)\)

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\left(2\right)\)

Từ (1) ;(2) và (3) suy ra:

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=6\)

Vậy \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\).Dấu "=" xảy ra <=>\(\hept{\begin{cases}a+b+c=6abc\\\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}\end{cases}=>a=b=c=\frac{1}{\sqrt{2}}}\)

27 tháng 9 2016

A = \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)

\(=\left(\frac{x}{3}-\frac{2\times\sqrt{3}\sqrt{xy}}{\sqrt{3}}+3y\right)+\left(\frac{2x}{3}-\frac{2\times\sqrt{2}\times\sqrt{3}\sqrt{x}}{\sqrt{2}\times\sqrt{3}}+\frac{3}{2}\right)-\frac{1}{2}\)

\(=\left(\frac{\sqrt{x}}{\sqrt{3}}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2x}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\)

\(\ge-\frac{1}{2}\)

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

20 tháng 4 2017

a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\)             b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)

20 tháng 4 2017

c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)