K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NH
1
11 tháng 7 2019
Ta có:\(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^xb^yc^z=a^2b^2c^2\)
\(\Leftrightarrow x;y;z=2\Rightarrow xyz=2.2.2=8=2+2+2+2=x+y+z+2\)
9 tháng 10 2019
x:y:z=a:b:c => x=ak ; y=bk ; z=ck (k thuộc R)
Vì a+b+c=a^2+b^2+c^2=1 => (a+b+c)^2=a^2+b^2+c^2=1
=> k^2 . (a+b+c)^2= k ^2 . (a^2+b^2+c^2)
=> (ak+bk+ck)^2 =(ak)^2+(bk)^2+(ck)^2
=> (x+y+z)^2=x^2+y^2+z^2
9 tháng 10 2019
Dùng tính chất dãy tỉ số bằng nhau
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)\(\Rightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\Rightarrow DPCM\)
Mình cần gấp ai đó giúp mình đi
Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)
Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)
\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)