K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 11 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)

\(a+b+c=1\Rightarrow\left(a+b+c\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)

\(\Rightarrow a^2+b^2+c^2=1\)

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

29 tháng 6 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)

kết hợp gt: a+b+c=1

\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)

27 tháng 11 2016

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\frac{1}{bc}+2\frac{1}{ac}\)

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=0\\ 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\\ \frac{abc^2+a^2bc+ab^2c}{a^2b^2c^2}=0\)

\(abc^2+a^2bc+ab^2c=0\\ abc\left(c+a+b\right)=0\)

\(a+b+c=0\)(DPCM)

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)