K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

\(\frac{bf-ce}{a}=\frac{cd-àf}{b}=\frac{ae-bd}{c}=\frac{abf-ace}{a^2}=\frac{bcd-abf}{b^2}=\frac{ace-bcd}{c^2}\)

\(=\frac{abf-ace+bcd-abf+ace-bcd}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\frac{bf-ce}{a}=\frac{cd-af}{b}=\frac{ae-bd}{c}=0\)

\(\Rightarrow bf-ce=0\Rightarrow bf=ce\Rightarrow\frac{b}{e}=\frac{c}{f}\left(1\right)\)

    \(cd-af=0\Rightarrow cd=af\Rightarrow\frac{c}{f}=\frac{a}{d}\left(2\right)\)

    \(ae-bd=0\Rightarrow ae=bd\Rightarrow\frac{a}{d}=\frac{b}{e}\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)

3 tháng 4 2017

d= d* 1

= d* (af- be)

= daf- dbe

= daf- bcf+ bcf- dbe 

= f (ad- bc)+b (cf- de)

Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1

=> f(ad- be)+ b(cf- de) >= f + b

<=> d >= b+f (đpcm)

22 tháng 3 2017

bó tay . com

11 tháng 3 2020

Đề sai rồi thì phải ak

\(\left(a+c-2b\right)^{2020}+\left|2bd-cd-cb\right|^{2019}=0\) nhé !

\(\Leftrightarrow a+c-2b=0;2bd-cd-cb=0\)

\(\Leftrightarrow a+c=2b;2bd-cd-cb=0\)

\(\Leftrightarrow\left(a+c\right)d-cd-cb=0\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)  ( đpcm )

5 tháng 2 2018

Sửa đề trong bài làm luôn nhé

\(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2\left(2a+b+c\right)}{2y}=\frac{4b+c-4a}{z}=\frac{9a}{x+2y-z}\left(1\right)\)

\(\Rightarrow\frac{2\left(a+2b-c\right)}{2x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}=\frac{9b}{2x+y+z}\left(2\right)\)

\(\Rightarrow\frac{-4\left(a+2b-c\right)}{-4x}=\frac{4\left(2a+b+c\right)}{4y}=\frac{4b+c-4a}{z}=\frac{9c}{-4x+4y+z}\left(3\right)\)

Từ (1), (2), (3) ta có ĐPCM

6 tháng 4 2018

Ta có \(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{x}{a+2b-c}=\frac{2y}{4a+2b+c}=\frac{z}{4b+c-4a}=\frac{x+2y-z}{9a}\left(1\right)\)

\(\Rightarrow\frac{2x}{2a+4b-2c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}=\frac{2x+y+z}{9b}\left(2\right)\)

\(\Rightarrow\frac{4x}{4a+8b-4c}=\frac{4y}{8a+4b+4c}=\frac{z}{4b+c-4a}=\frac{4y+z-4a}{9c}\left(3\right)\)

Từi (1),(2),(3) 

còn j giải típ nha

@@@@@@@@@@@@

10 tháng 10 2021

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

10 tháng 10 2021

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^