K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 1 2021

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{b+c+d+a}{b}=\frac{c+d+a+b}{c}=\frac{d+a+b+c}{d}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\end{cases}}\).

\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)..

Nếu \(a=b=c=d\)\(P=4\).

Nếu \(a+b+c+d=0\)\(P=-1-1-1-1=-4\).

DD
29 tháng 10 2021

Bạn tham khảo câu hỏi tương tự. 

Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM

Ta có với a,b,c,d là các số thực khác 0 

\(\Rightarrow\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)

\(\Rightarrow\frac{a-b+c+d}{b}+1=\frac{a+b-c+d}{c}+1=\frac{a+b+c-d}{d}+1=\frac{b+c+d-a}{a}+1\)

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Ta có M= \(\left(\frac{a+c+d}{b}\right)\left(\frac{a+b+d}{c}\right)\left(\frac{a+b+c}{d}\right)\left(\frac{b+c+d}{a}\right)\)

=> M= 3.3.3.3 

=> M =81

11 tháng 12 2017

Áp dụng TC cuae DTSBN ta có:

a-b+c+d/b = a+b-c+d/c = a+b+c-d/d = b+c+d-a/a = \(\frac{a-b+c+d+a+b-c+d+a+b+c-d+b+c+d-a}{b+c+d+a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

=> a-b+c+d/b = 3 => a-b+c+d = 3b => a+c+d = 4b

a+b-c+d/c = 3 => a+b-c+d = 3c => a+b+d = 4c

a+b+c-d/d = 3 => a+b+c-d = 3d => a+b+c = 4d

b+c+d-a/a = 3 => b+c+d-a = 3a => b+c+d = 4a

=> M = \(\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}=\frac{4d.4c.4a.4b}{abcd}=\frac{256abcd}{abcd}=256\)

Vậy M = 256

10 tháng 8 2017

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)

\(\Leftrightarrow\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{b+c+a}{d}\)

\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{a+c+d}{b}+1=\frac{a+b+d}{c}+1=\frac{b+c+a}{d}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

Xét \(a+b+c+d=0\) ta có : 

\(a+b=-c-d;b+c=-a-d;c+d=-a-b;d+a=-b-c\)

\(\Rightarrow A=\frac{a+b}{-a-b}+\frac{b+c}{-b-c}+\frac{c+d}{-c-d}+\frac{d+a}{-b-c}=-1-1-1-1=-4\)

Xét \(a+b+c+d\ne0\) ta có : \(a=b=c=d\)

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

6 tháng 11 2019

Đặt điều kiện : a, b, c, d khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)

Nếu \(a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\Rightarrow d+a=-\left(b+c\right)\Rightarrow M=-4}\)

Và nếu a + b + c + d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)

Ta có : \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}\Rightarrow a=b=c=d}\)

Khi đó \(M=4\)

Vậy \(\Rightarrow\orbr{\begin{cases}M=4\\M=-4\end{cases}}\)

bạn ơi hỏi cái, M ở đâu ra vậy.