Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt k bằng tỉ số của dãy tỉ số bằng nhau:
\(k=\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> \(x=ak;y=bk;z=ck\)
Khi đó ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=k^2\left(a+b+c\right)^2=k^2.1^2=k^2\) (1)
(Vì \(a+b+c=1\))
Và: \(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2\left(a^2+b^2+c^2\right)=k^2\) (2)
(vì \(a^2+b^2+c^2=1\))
Từ (1) và (2) suy ra \(x^2+y^2+z^2=\left(x+y+z\right)^2=k^2\)
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Các bạn giúp mình với, mai mình phải nộp rồi, ai nhanh mình k cho !!!
bn này ra toàn bài khó nhỉ :)
đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\Rightarrow x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2.\left(a^2+b^2+c^2\right)=k^2.1=k^2\left(1\right)\)
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k.\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\left(2\right)\)
từ (1) và (2) => đpcm
ps: ko chắc lắm :))