K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

=\(\left(\dfrac{x^2}{a^2}-\dfrac{x^2}{a^2+b^2+c^2}\right)+\left(\dfrac{y^2}{b^2}-\dfrac{y^2}{a^2+b^2+c^2}\right)\)+\(\left(\dfrac{z^2}{c^2}-\dfrac{z^2}{a^2+b^2+c^2}\right)=0\)

=\(x^2.\dfrac{b^2+c^2}{a^2+b^2+c^2}+y^2.\dfrac{a^2+c^2}{a^2+b^2+c^2}+z^2.\dfrac{a^2+b^2}{a^2+b^2+c^2}=0\)

\(a,b,c\) \(\ne\)0 nên dấu "=" xảy ra khi \(x=y=z=0\)

\( \Rightarrow\)\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

Chúc Bạn Học Tốt !!!

18 tháng 8 2017

@Bùi Thị Vân

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

10 tháng 4 2017

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(=\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(=x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)

Vì \(a,b,c\ne0\) nên dấu =  xảy ra khi \(x=y=z=0\)

\(\Rightarrow A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

10 tháng 4 2017

\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

( Thì đằng nào 0 + 0 thì chẳng bằng 0 ) -_-"

~~~ Chúc bạn học giỏi ~~~

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

4 tháng 12 2021

Ko biết thì đừng bình luận vô đây.

5 tháng 12 2021

cho dãy tỉ số bằng nhau: 3a+b+2c/2a+c=a+3b+c/2b=a+2b+2c/b+c. tính giá trị biểu thức (a+b)(b+c)(c+a)/abc, với các mẫu số khác 0. Cái này cũng khó, nếu sai thì mong bạn thông cảm! 

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)