K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Chọn D.

Phương pháp:

Nhận biết đồ thị hàm số bậc ba.

Cách giải:

Do 3.(-l) < 0 => Phương trình y' = 0 luôn có 2 nghiệm phân biệt trái dấu

=> Hàm số đã cho có 2 cực trị với mọi m.

=Đồ thị hàm số không thể là hình (III)

Mặt khác a = 1 > 0 => Đồ thị hàm số không thể là hình (II)

Đồ thị hàm số

21 tháng 9 2019

Đáp án B

Chỉ có khẳng định (III)  sai các khẳng định còn lại đúng

30 tháng 4 2018

Chọn đáp án B

Phương pháp

Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.

Cách giải

Dựa vào đồ thị hàm số ta thấy hàm số đã cho

+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).

+) Hàm số có 3 điểm cực trị.

+) Hàm số không có GTLN.

Do đó các mệnh đề (I), (III) đúng.

12 tháng 4 2018

Đáp án  C

Các khẳng định đúng là I, III, IV.

7 tháng 3 2019

Đáp án B

Dựa vào bảng biến thiên ta thấy:

+) lim x → − ∞ y = − 1 ⇒  đồ thị hàm số có TCN   y = − 1

+) lim x → 1 − y = − ∞ ⇒  đồ thị hàm số có TCĐ   x = 1

+) Hàm số không có giá trị lớn nhất vì   lim x → + ∞ y = + ∞

+) Hàm số không có giá trị nhỏ nhất vì   lim x → 1 − y = − ∞

Suy ra không có mệnh đề nào đúng

18 tháng 9 2017

Đáp án B

Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.

Cách giải: Ta có 

BBT:

Từ BBT ta thấy (I) đúng, (II) sai.

Với  => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).

=>(III) đúng.

Vậy có hai khẳng định đúng

19 tháng 5 2018

Đáp án C

Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒  hàm số có 3 điểm cực trị

Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒  có 3 nghiệm phân biệt

Suy ra phương trình f x = m + 2018  có nhiều nhất 4 nghiệm

Xét  y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2

Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).

25 tháng 7 2018

Đáp án D

28 tháng 5 2018

Chọn B.

Phương pháp:

Cách giải: Ta có: