K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Do P  và M lần lượt là trung điểm của AB và BC nên PM là đường trung bình của tam giác ABC.

=>  PM//  AC

Cạnh AC đi qua N(1; -4) và nhận  M P → ​     ( ​ − 2 ;    4 ) =     2 ( ​ − 1 ;    2 ) làm VTCP nên nhận  n → ​   (    2 ;    1 ) làm VTPT.

Phương trình AC:  2( x- 1 ) + 1. ( y + 4) = 0 hay  2x +  y + 2 =0

Đáp án B

21 tháng 8 2019

Bằng việc lần lượt giải các hệ phương trình bậc nhất hai ẩn, ta có tọa độ các đỉnh của tam giác là  A − 4 7 ; 16 7 ,   B − 10 11 ; 14 11 ,   C − 8 ; 6   .

Ta có công thức tính diện tích tam giác ABC là: S = 1 2 . d A ,   B C .   B C = 1 2 2. − 4 7 + 3. 16 7 − 2 13 . − 8 + 10 11 2 + 6 − 14 11 2 = 338 77

Đáp án là phương án C.

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

9 tháng 4 2021

1.

A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)

Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)

Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)

 

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

NV
7 tháng 2 2022

Do A là giao điểm AB, AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-12=0\\x+4y-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(6;0\right)\)

Do B thuộc AB nên tọa độ có dạng: \(B\left(b;-2b+12\right)\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(-4c+6;c\right)\)

Do M là trung điểm cạnh BC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}b-4c+6=2.0\\-2b+12+c=2.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-4c=-6\\-2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(2;8\right)\\C\left(-2;2\right)\end{matrix}\right.\)

Chọn A

NV
12 tháng 4 2020

Mình làm 1 câu, bạn làm 3 câu còn lại hoàn toàn tương tự:

Do B thuộc AB nên tọa độ B có dạng: \(B\left(b;-2b+2\right)\)

Do C thuộc AC nên tọa độ C có dạng: \(C\left(c;\frac{-c+3}{3}\right)\)

Do M là trung điểm BC nên:

\(\left\{{}\begin{matrix}x_B+x_C=2x_M\\y_B+y_C=2y_M\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b+c=-2\\-2b+2+\frac{-c+3}{3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-2\\-2b-\frac{c}{3}=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1\\c=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(1;0\right)\\C\left(-3;2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BC}=\left(-4;2\right)\)

\(\Rightarrow\) Đường thẳng BC nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình BC:

\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)

12 tháng 3 2021

H là trực tâm của tam giác nhỉ.

A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)

B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)

H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)

Phương trình đường thẳng AC: \(y=0\)

Phương trình đường thẳng CH: \(x+2y-1=0\)

C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)

 

10 tháng 4 2021

Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến

AB đi qua A (1; -1) nên nó có phương trình là

x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0

Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng

M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)

⇒ AM ⊥ Δ 

⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)

⇒ t + 1 + 2. (2t + 2) = 0

⇒ t = -1

Vậy M (- 1; - 1)

M là trung điểm của AB => Tọa độ B

Làm tương tự như thế sẽ suy ra tọa độ C