Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(P\left(x\right)=x-2x^2+3x^5+x^4+x=3x^5+x^4-2x^2\)
\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)
\(=-3x^5+2x^2-2x+3\)
b) Ta có:
\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2-3x^5+2x^2-2x+3\)
\(=x^4-2x+3\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+2x-3\)
c) Ta có: \(P\left(0\right)=3.0^5+0^4-2.0^2=0\)
=> x = 0 là nghiệm của P(x)
Mà \(Q\left(0\right)=-3.0^5+2.0^2-2.0+3=3\)
=> x = 0 không là nghiệm của đa thức Q(x)
a: \(P\left(x\right)=x-2x^2+3x^5+x^4+x-1\)
\(=3x^5+x^4-2x^2+2x-1\)
\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)
\(=-3x^5+2x^2-2x+3\)
b: P(x)+Q(x)
\(=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)
\(=x^4+2\)
P(x)-Q(x)
\(=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+4x-4\)
a: P(x)=6x^4+5x^3-3x^2+5x-10
Q(x)=5x^4+5x^3+2x^2-4x+4
b: P(x)+Q(x)
=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4
=11x^4+10x^3-x^2+x-6
P(x)-Q(x)
=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4
=x^4-5x^2+9x-14
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
a)
`P(x)=7x^3+(4x^2-3x^2)-x+5=7x^3+x^2-x+5`
`Q(x)=-7x^3-x^2+2x+(6-8)=-7x^3-x^2+2x-2`
b)
`P(x)+Q(x) = 7x^3+x^2-x+5-7x^3-x^2+2x-2`
`=(7x^3-7x^3)+(x^2-x^2)+(2x-x)+(5-2)`
`=x+3`
`P(x)-Q(x)=7x^3+x^2-x+5-(-7x^3-x^2+2x-2)`
`= 7x^3+x^2-x+5+7x^3+x^2-2x+2`
`=(7x^3+7x^3)+(x^2+x^2)-(x+2x)+(5+2)`
`=14x^3+2x^2-3x+7`
c) `A(x) = P(x)+Q(x)=x+3`
`A(x)=0 <=> x+3=0 <=>x=-3`.
a)
\(P\left(x\right)=x-2x^2+3x^5+x^4+x\)
\(\Leftrightarrow P\left(x\right)=\left(x+x\right)-2x^2+x^4+3x^5\)
\(\Leftrightarrow P\left(x\right)=2x-2x^2+x^4+3x^5\)
\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)
\(\Leftrightarrow Q\left(x\right)=3-2x+\left(-2x^2+4x^2\right)+\left(x^4-x^4\right)-3x^5\)
\(\Leftrightarrow Q\left(x\right)=3-2x+2x^2-3x^5\)
b)
\(P\left(x\right)+Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)+\left(3-2x+2x^2-3x^5\right)\)
\(=2x-2x^2+3x^5+x^4+3-2x+2x^2-3x^5\)
\(=\left(2x-2x\right)+\left(3x^5-3x^5\right)+\left(-2x^2+2x^2\right)+x^4+3\)
\(=x^4+3\)
\(P\left(x\right)-Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)-\left(3-2x+2x^2-3x^5\right)\)
\(=2x-2x^2+3x^5+x^4-3+2x-2x^2+3x^5\)
\(=\left(2x+2x\right)+\left(-2x^2-2x^2\right)+\left(3x^5+3x^5\right)+x^4-3\)
\(=4x-4x^2+6x^5+x^4-3\)
\(=6x^5+x^4-4x^2+4x-3\)