K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Đáp án cần chọn là: A

Từ các chữ số 3;1;8;0 để lập ra số tự nhiên nhỏ nhất gồm bốn chữ số khác nhau thì

+ Hàng chục nghìn là chữ số nhỏ nhất và khác 0 nên chữ số hàng chục nghìn là 1.

+ Chữ số hàng trăm là số nhỏ nhất trong ba số còn lại là 0

+ Chữ số hàng chục là 3 và chữ số hàng đơn vị là 8.

Vậy số cần tìm là 1038.

29 tháng 4 2019

Ta có P=10a+b/a+b

           =9a+a+b/a+b

           =1+9a/a+b

          =1+9/a+b/a

         =1+9/1+b/a

Để P có giá trị nhỏ  nhất=>9/1+b/a cũng phải đạt giá trị nhỏ nhất=>1+b/a đạt giá trị lớn nhất<=>b/a có giá trị lớn nhất=>b lớn nhất  ; a nhỏ nhất

Mà a và b là số có 1 chữ số và a khác 0=>a=1 ; b=9=>ab=19

Khi đó P=19/1+9=1,9

1 tháng 5 2019
  1. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  2. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  3. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  4. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  5. Bạn Trần Hoàng Hải đó có làm đúng không vậy
  6. Người ta kêu tìm \(\overline{ab}\) kia mà
  7. Tự dưng đi tìm \(P\) làm gì vậy
  8. Kết quả là \(\overline{ab}=19\) đúng không
  9. Nếu đúng thì k nhé, nếu sai thì thôi vậy!
4 tháng 3 2020

B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y

⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)

⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15

⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1

⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28

28 tháng 5 2018

a) Theo bài ra, ta có:

        \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)

Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)

\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)

\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)

Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)

Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)

\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)

\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)

\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)

\(\Rightarrow b=45:5=9.\)

                                  Vậy \(a=1;b=9;c=5.\)

b) Theo bài ra, ta có:

     \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)

 Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)      

\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.

     \(2012\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)

\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)

          \(92\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}=4n\left(n\in N\right)\)

\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)

Thay vào, ta được :

      \(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)

 \(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)

\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2

\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5 

\(\Rightarrow A⋮5.\)

Vậy A là một số tự nhiên chia hết cho 5.

\(\)