Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
a)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{-98}{100}\) = \(\frac{-49}{50}\)
\(S=\left(0,25\right)^2+\left(0,5\right)^2+...+\left(2,5\right)^2\)
\(\Rightarrow\frac{n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2,5\left(2,5+1\right)\left(2,5.2+1\right)}{6}\)
\(\Rightarrow S=8,75\)
Ta có :
\(S=\left(0,25\right)^2+\left(0,5\right)^2+...+\left(2,5\right)^2\)
\(\Rightarrow4S=2^2.\left(0,25\right)^2+2^2.\left(0,5\right)^2+.....+2^2.\left(2,5\right)^2\)
\(\Rightarrow4S=1^2+2^2+....+10^2\)
\(\Rightarrow4S=385\)
\(\Rightarrow S=\frac{385}{4}\)
a)1,5.(1/3-2/3)
=3/2.(-1/3)
=-1/2
b)2/5+3/5:(-3/2)=1/2
=2/3+2/5+1/2
=16/15+1/2
=47/30
c)1 và 2/5 - (-1/2)^2 + 7/10
=7/5 - 1/4 + 7/10
=23/20 + 7/10
=37/20
\(a,2^2+4^2+6^2+...+20^2\)
\(=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)
\(=\left(1^2+2^2+3^2+...+10^2\right).2^2\)
\(=385.4\)
\(=1540\)
\(b,\left(0.25\right)^2+\left(0.5\right)^2+...+\left(2.5\right)^2\)
\(=1^2.0,25^2+2^2.0,25^2+...+10^2.0,25^2\)
\(=\left(1^2+2^2+...+10^2\right).0,25^2\)
\(=385.0.0625\)
\(=24.0625\)
a/ Có tự ghi lại đề
= ((2+8)+(4+6)+10+(12+18)+(14+16)+20))^2
= ((10+10+10+30+30+20))^2
=(110)^2
=100^2+10^2
=10000+100
=10100
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200