Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\overrightarrow {AB} = (1;7),\overrightarrow {AD} = ( - 7;1),\overrightarrow {CD} = ( - 1; - 7)\),\(\overrightarrow {BC} = ( - 7;1)\)
Suy ra \(AB = \overrightarrow {AB} = \sqrt {{1^2} + {7^2}} = 5\sqrt 2 ,AD = \overrightarrow {AD} = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}} = 5\sqrt 2 ,\)
\(CD = \overrightarrow {CD} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} = 5\sqrt 2 \),\(BC = \overrightarrow {BC} = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2}} = 5\sqrt 2 \)
\( \Rightarrow AB = BC = CD = DA = 5\sqrt 2 \) (1)
Mặt khác ta có
\(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AD} }}{{AB.AD}} = \frac{{1.( - 7) + 7.1}}{{5\sqrt 2 .5\sqrt 2 }} = 0 \Rightarrow \widehat A = 90^\circ \) (2)
Từ (1) và(2) suy ra ABCD là hình vuông (đpcm)
Câu 1: ĐK: $x\neq -1$
Nếu $x\geq 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2-3x}{x+1}\leq 2\Rightarrow \left\{\begin{matrix} x\leq 4\\ x\geq 0\end{matrix}\right.\Rightarrow x\in\left\{0;1;2;3;4\right\}\)
Nếu $x< 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2+3x}{x+1}\leq 2\)
Trường hợp $-1< x< 0$ thì $\Leftrightarrow -2(x+1)\leq 2+3x\leq 2(x+1)$
$\Leftrightarrow x\geq \frac{-4}{5}$ và $x\leq 0$. Kết hợp với ĐK $-1< x< 0$ nên không có giá trị $x$ nguyên thỏa mãn
Trường hợp $x< -1$ thì $\Leftrightarrow -2(x+1)\geq 2+3x\geq 2(x+1)$
$\Leftrightarrow x\leq \frac{-4}{5}$ và $x\geq 0$ (vô lý)
Do đó có 5 giá trị $x$ nguyên thỏa mãn.
Đáp án B
Câu 2:
VTCP của $\Delta_1$: $\overrightarrow{u_1}(m+1, -1)$
VTPT của $\Delta_2$: $\overrightarrow{n_2}(m,-6)$
Để 2 đường thẳng song song với nhau thì: $\overrightarrow{u_1}\perp \overrightarrow{n_2}$
$\Leftrightarrow m(m+1)+(-1)(-6)=0$
$\Leftrightarrow m^2+m+6=0$
$\Leftrightarrow (m+\frac{1}{2})^2=-\frac{23}{4}< 0$ (vô lý- loại)
Vậy không có giá trị m thỏa mãn
Đáp án B.
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\)
Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).
a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
Vì \(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).
a) Thay tọa độ điểm \(M\left( {4; - 2} \right)\) vào phương trình đường tròn ta được: \({\left( {4 - 1} \right)^2} + {\left( { - 2 - 2} \right)^2} = {3^2} + {4^2} = 25\). Vậy điểm M thỏa mãn phương trình đường tròn \(\left( C \right)\).
b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\) và \(R = 5\).
c) Ta có: \(\overrightarrow {{n_\Delta }} = \overrightarrow {IM} = \left( {3; - 4} \right)\). Vậy phương trình tiếp tuyến \(\Delta \) của đường tròn \(\left( C \right)\) là:
\(3\left( {x - 4} \right) - 4\left( {y + 2} \right) = 0 \Leftrightarrow 3x - 4y - 20 = 0\)
Ta có \(\overrightarrow{AB}\left(5;10\right);\overrightarrow{CD}\left(-4;-8\right)\).
Suy ra \(\overrightarrow{AB}=-\dfrac{5}{4}\overrightarrow{CD}\) nên nay véc tơ này cùng phương nên hoặc 4 điểm A, B, C, D nằm trên một đường thẳng hoặc 2 đường thẳng AB và CD song song. (1)
Mặt khác: \(\overrightarrow{AC}\left(2;-6\right);\overrightarrow{BD}\left(-7;-12\right)\);
\(\dfrac{2}{-7}\ne\dfrac{-6}{-12}\) nên \(\overrightarrow{AC},\overrightarrow{BD}\) không cùng phương vậy 4 điểm A, C, B, D không nằm trên một đường thẳng. (2)
Từ (1) và (2) suy ra: hai đường thẳng AB và CD song song với nhau.