Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M=\left(\dfrac{\sqrt{x}+2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{x+3}{x-1}\right)\\ =\left(\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}-1\right)+x+3}{x-1}\right)\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1-x+\sqrt{x}+x+3}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\sqrt{x}+4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
`b,` Để `M>1` Thì :
\(\dfrac{\sqrt{x}+1}{2\sqrt{x}}>1\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}}-1>0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-2\sqrt{x}}{2\sqrt{x}}>0\\ \Leftrightarrow\dfrac{-\sqrt{x}+1}{2\sqrt{x}}>0\)
\(\Leftrightarrow-\sqrt{x}+1>0\) `(` Vì \(2\sqrt{x}>0\) do \(x>0\) `)`
\(\Leftrightarrow-\sqrt{x}>-1\\ \Rightarrow x< 1\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)
Vậy: Khi \(x^2-4x=0\) thì M=0
Bài 1:
a: Ta có: \(x^2-2\sqrt{5}x+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2
a) \(M=\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{4}+1}{\sqrt{4}-1}=\dfrac{2+1}{2-1}=3\)
\(a,ĐK:x>0;x\ne1\\ b,M=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}-1\\ c,M< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow0< x< 1\)
\(a,A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(đk:x\ge0;x\ne1\right)\)
\(=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{3x+2\sqrt{x}+1-3x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2}{\sqrt{x}-1}\)
\(---\)
\(b,A< 0\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow\sqrt{x}< 1\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện của \(x\), ta được:
\(0\le x< 1\)
Vậy: ...
\(Toru\)
a) \(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(A=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(A=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(A=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(A=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(A=\dfrac{2}{\sqrt{x}-1}\)
b) \(A< 0\) khi
\(\dfrac{2}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow\sqrt{x}< 1\)
\(\Leftrightarrow x< 1\)
Kết hợp với đk:
\(0\le x< 1\)
a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
a: Ta có: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b:Để M=2 thì \(\sqrt{x}-1=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=-1\left(loại\right)\)