Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-\frac{13}{6}\end{cases}}\)
Đặt \(A=\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{12-3x^2}\right)\cdot\frac{24-12x}{6+13x}\)
\(\Leftrightarrow A=\left(\frac{1+2x}{2\left(x+2\right)}-\frac{x}{3\left(x-2\right)}-\frac{2x^2}{3\left(x^2-4\right)}\right)\cdot\frac{12\left(2-x\right)}{6+13x}\)
\(\Leftrightarrow A=\frac{3\left(2x^2-3x-2\right)-2\left(x^2+2x\right)-4x^2}{6\left(x-2\right)\left(x+2\right)}\cdot\frac{12\left(2-x\right)}{6+13x}\)
\(\Leftrightarrow A=\frac{-2\left(6x^2-9x-6-2x^2-4x-4x^2\right)}{\left(x+2\right)\left(6+13x\right)}\)
\(\Leftrightarrow A=\frac{-2\left(-6-13x\right)}{\left(x+2\right)\left(6+13x\right)}\)
\(\Leftrightarrow A=\frac{2}{x+2}\)
b) Để biểu thức nhận giá trị dương
\(\Leftrightarrow\frac{2}{x+2}>0\)
\(\Leftrightarrow x+2>0\)
\(\Leftrightarrow x>-2\)
Vậy để biểu thức có giá trị dương thì \(x>-2\)
Đề nghỉ ghi cái đề? @@ Rút gọn đúng ko?
\(Đkxđ:\hept{\begin{cases}x\ne\pm2\\x\ne-\frac{6}{13}\end{cases}}\)
\(A=\left[\frac{\left(1+2x\right)\left(x-2\right).3-2x\left(x+2\right)-4x^2}{6\left(x^2-4\right)}\right].\frac{12\left(2-x\right)}{6.13x}\)
\(=\left[\frac{3x-6+6x^2-12x-2x^2-4x-4x^2}{6\left(x^2-4\right)}\right].\frac{12\left(2-x\right)}{6+13x}\)
\(=\frac{13x+6}{6\left(x+2\right)\left(2-x\right)}.\frac{12\left(2-x\right)}{6+13x}\)
\(=\frac{2}{x+2}\)
\(A=\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{12-3x^2}\right)\times\frac{24-12x}{6+13x}\)
\(=\left(\frac{1+2x}{2\left(2+x\right)}+\frac{x}{3\left(2-x\right)}+\frac{2x^2}{3\left(4-x^2\right)}\right)\times\frac{2.\left(12-x\right)}{6+13x}\)
\(=\left(\frac{\left(1+2x\right).3.\left(2-x\right)}{2.3.\left(2+x\right)\left(2-x\right)}+\frac{2x\left(2+x\right)}{2.3.\left(2-x\right)\left(2+x\right)}+\frac{2.2x^2}{2.3.\left(2-x\right)\left(2+x\right)}\right)\times\frac{2.\left(12-x\right)}{6+13x}\)
\(=\left(\frac{6+12x-3x-6x^2+4x+2x^2+4x^2}{6\left(2-x\right)\left(2+x\right)}\right)\times\frac{2\left(12-x\right)}{6+13x}\)
\(=\frac{6+13x}{6\left(2-x\right)\left(2+x\right)}\times\frac{2\left(12-x\right)}{6+13x}\)
\(=\frac{12-x}{\left(2-x\right)\left(2+x\right)}=\frac{12-x}{4-x^2}\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0