K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2019

\(S_{n^3}\) có vẻ là ghi sai đề, \(S_n^3\) mới đúng

Đặt \(\left\{{}\begin{matrix}a=\left(2-\sqrt{3}\right)^n\\b=\left(2+\sqrt{3}\right)^n\end{matrix}\right.\) \(\Rightarrow ab=\left[a=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n=1^n=1\)

\(S_n^3=\left(a+b\right)^3\)

\(S_{3n}+3S_n=a^3+b^3+3\left(a+b\right)=a^3+b^3+3.1.\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=S_n^3\)

b/ Thay trực tiếp vào casio và bấm, hoặc nếu giải kiểu tổng quát thì:

\(S_1=2-\sqrt{3}+2+\sqrt{3}=4\) ; \(S_2=7-4\sqrt{3}+7+4\sqrt{3}=14\)

\(\Rightarrow S_3+3S_1=S_1^3\Rightarrow S_3=S_1^3-3S_1=4^3-3.4=52\)

Đặt \(\left\{{}\begin{matrix}2-\sqrt{3}=x\\2+\sqrt{3}=y\end{matrix}\right.\) \(\Rightarrow xy=1\)

\(S_1=x+y=4\) ; \(S_3=x^3+y^3\)

\(S_1S_3=\left(x+y\right)\left(x^3+y^3\right)=x^4+y^4+x^3y+y^3x\)

\(\Rightarrow S_1S_3=x^4+y^4+xy\left(x^2+y^2\right)=S_4+S_2\)

\(\Rightarrow S_4=S_1S_3-S_2=194\)

20 tháng 8 2017

không phải nha bạn

23 tháng 10 2018

ko biết làm

30 tháng 5 2017

bài này hay đó bạn 

ta có: Sn+2= x1n+2+ x2n+2 = x1n+2+ x2n+2+ x1n+1x2+ x2n+1x1-  x1n+1x2- x2n+1x1

                                                       = ( x1n+1+ x2n+1)( x1+x2) - x1x2 ( x1n+x2n)

                                         = - b/aSn+1 - c/aSn       ( Viet )

Suy ra   aSn+2 +bSn+1+ cSn = -bSn+1 -cSn + bSn+1 +cSn = 0 (đpcm)

5 tháng 8 2016

chtt là đc ý đầu 
ý sau thì dùng nhị neww

5 tháng 8 2016

chtt là j bác

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

8 tháng 3 2017

Trùi ui,khó quá đi mất

8 tháng 3 2017

bđt C-B-S dạng tổng quát, trên mạng có chứng minh

23 tháng 11 2017

Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)