K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

a) Q\(=\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right).\left(1+\dfrac{1}{a}\right)\) tồn tại :

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\2-2\sqrt{a}\ne0\\1-a^2\ne0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

3 tháng 10 2018

không có chuyện a> hoặc = 0 đâu nhé

10 tháng 11 2018

\(Q=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right).\dfrac{a+1}{a}\)

\(Q=\dfrac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}.\dfrac{a+1}{a}\)

\(Q=\dfrac{\left(1+a\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(Q=\dfrac{2\left(1+a\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(Q=\dfrac{1+a-a^2-1}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(Q=\dfrac{a-a^2}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(Q=\dfrac{a\left(1-a\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(Q=\dfrac{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=1\)

vậy

a) Vì khi a>0 và \(a\notin\left\{4;1\right\}\) thì \(\left\{{}\begin{matrix}\sqrt{a}-1\ne0\\\sqrt{a}\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\)

nên Q xác định

b) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Để Q dương thì \(\sqrt{a}-2>0\)

\(\Leftrightarrow a>4\)

Kết hợp ĐKXĐ, ta được: a>4

 

22 tháng 12 2020

Bài 1: 

a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)

mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2>0\)

\(\Leftrightarrow\sqrt{a}>2\)

hay a>4

Kết hợp ĐKXĐ,ta được: a>4

Vậy: Để Q dương thì a>4

Sửa đề: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a+3\sqrt{a}+2-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{6\sqrt{a}}\)

\(=\dfrac{a-4}{6a\left(\sqrt{a}-1\right)}\)

c) Thay \(a=9-4\sqrt{5}\) vào Q, ta được:

\(Q=\dfrac{5-4\sqrt{5}}{6\left(9-4\sqrt{5}\right)\left(\sqrt{5}-3\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(9\sqrt{5}-27-20+12\sqrt{5}\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(21\sqrt{5}-47\right)}\)

\(=\dfrac{\left(5-4\sqrt{5}\right)\left(21\sqrt{5}+47\right)}{-24}\)

\(=\dfrac{105\sqrt{5}+235-420-188\sqrt{5}}{-24}\)

\(=\dfrac{-83\sqrt{5}-185}{-24}=\dfrac{83\sqrt{5}+185}{24}\)

10 tháng 7 2021

cảm ơn ạ!

 

6 tháng 7 2021

a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)

\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) 

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\)  \(\left(đpcm\right)\).

b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

 x -1           1           -1           2          -2
 x        2(TM)     0(ko TM)        3(TM)     -1(koTM)

 

Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\) 

 

 

 

8 tháng 4 2021

a,Ta có  \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)

\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)

b, Với \(x\ge0;x\ne1\)

 \(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)

\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)

Vậy biểu thức ko phụ thuộc biến x 

c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên 

thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1 
x409vô lí 
13 tháng 4 2021
27 tháng 5 2017

Căn bậc hai. Căn bậc ba

2 tháng 10 2018

ko biet

15 tháng 10 2017

điều kiện xác định là : \(a>0;a\ne1\)

ta có : \(P=\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\dfrac{\left(\sqrt{a}-1\right)\left(a-1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{a-\sqrt{a}+2\sqrt{a}-2-\left(a+\sqrt{a}-2\sqrt{a}-2\right)}{\sqrt{a}+1}\right)\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

\(P=\dfrac{a-\sqrt{a}+2\sqrt{a}-2-a-\sqrt{a}+2\sqrt{a}+2}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

\(P=\dfrac{2\sqrt{a}}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{2}{\sqrt{a}+1}.\sqrt{a}-1=\dfrac{2\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)

\(P=\dfrac{2\sqrt{a}-2}{\sqrt{a}+1}\) (biểu thức này luôn phụ thuộc vào biến) (đpcm)

15 tháng 10 2017

không phụ thuộc vào biến mà bạn