Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Minh Triều ơi rút gọn thành \(\frac{-3x+6}{x-4}\)xong rồi làm như nào để tìm x nguyên vậy, help mk với
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)
Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)
Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)
Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)
b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3
Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)
=> x + 2 = 3(x - 3)
=> x + 2 = 3x - 9
=> x - 3x = -9 - 2
=> -2x = -11
=> x = 11/2 (tm)
Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)
c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3
Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)
Để M \(\in\)Z <=> 3 \(⋮\)x - 3
=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 |
x | 4 | 2 (ktm) | 6 | 0 |
Vậy ...
a) ĐKXĐ: x - 3 \(\ne\)0 x \(\ne\)3
9 - x2 \(\ne\)0 <=> x \(\ne\)\(\pm\)3
x + 3 \(\ne\)0 x \(\ne\)-3
\(\frac{6x-12}{2x^2-18}\) \(\ne\)0 \(6x-12\ne0\) và \(2x^2-18\ne0\)
x \(\ne\)\(\pm\)3
<=> \(x\ne2\) và x \(\ne\)\(\pm\)3
<=> x \(\ne\)\(\pm\)3 và x \(\ne\)2
Ta có: B = \(\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)
B = \(\left(\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{6\left(x-2\right)}{2\left(x^2-9\right)}\)
B = \(\left(\frac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+3\right)}\)
B = \(\frac{3x+15}{\left(x+3\right)\left(x-3\right)}\cdot\frac{\left(x-3\right)\left(x+3\right)}{3\left(x-2\right)}\)
B = \(\frac{3\left(x+5\right)}{3\left(x-2\right)}\)
B = \(\frac{x+5}{x-2}\)
b) (sai đề)
c) Ta có: B = \(\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để B \(\in\)Z <=> 7 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng:
x - 2 | 1 | -1 | 7 | -7 |
x | 3 (ktm) | 1 | 9 | -5 |
Vậy ...
a) \(\text{ĐKXĐ:}\hept{\begin{cases}x\ne\pm3\\x\ne2\end{cases}}\)
\(B=\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)
\(B=\left[\frac{x+3}{x-3}+\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)
\(B=\left[\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]\)
\(B=\left[\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)
\(B=\frac{x^2+6x+9-\left(2x^2-6\right)+x^2-3}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)
\(B=\frac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x-3\right)\left(x+3\right)}{6\left(x-2\right)}\)
\(B=\frac{x+5}{x-2}\)
b) Ta có: \(\frac{x+5}{x-2}=1+\frac{7}{x-2}\)
Để B nguyên thì: \(7⋮x-2\)
\(\Rightarrow x-2\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 (loại) | -5 | 9 |
Vậy: \(x\in\left\{1;-5;9\right\}\)