Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
a, \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(=\frac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-24-3x+8\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{x+8}{\sqrt{x}+1}\)
b, Ta co : \(x=14-6\sqrt{5}=14-2.3.\sqrt{5}\)
\(=3-2.3\sqrt{5}+\left(\sqrt{5}\right)^2=\left(3-\sqrt{5}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
Thay vào P ta được :
\(P=\frac{14-6\sqrt{5}+8}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{2\left(29-\sqrt{5}\right)}{11}\)
\(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\\ \)\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b.
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Rightarrow1-\frac{3}{\sqrt{x}+1}\ge1-3=-2\Rightarrow P\ge-2\)
Dấu "=" xảy ra <=> x=0
vậy Min (P) = -2 <=> x=0
Rút gọn: \(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
ĐKXĐ : \(x\ge0;x\ne9\)
a) \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(P=\frac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+8}{\sqrt{x}+1}\)( thu gọn tử xong rút gọn )
b) \(x=14-6\sqrt{5}=\left(\sqrt{5}-3\right)^2\)\(\Rightarrow\sqrt{x}=3-\sqrt{5}\)
Khi đó : \(P=\frac{58-2\sqrt{5}}{11}\)
c) \(P=\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge2\sqrt{9}-2=4\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Leftrightarrow x=4\)
Vậy GTNN của P là 4 \(\Leftrightarrow x=4\)