Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
a, Ta có : \(A=\frac{1}{x+2}-\frac{2x}{4-x^2}+\frac{3}{x-2}\)
\(=\frac{1}{x+2}-\frac{2x}{\left(2-x\right)\left(x+2\right)}+\frac{3}{x-2}\)
\(=\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra : \(M=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{3x+2}\)
\(=\frac{2\left(3x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}=\frac{2}{x-2}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a) ĐKXĐ : x \(\ne-2;x\ne1;x\ne0\)
\(A=\left(\frac{x}{x+2}-\frac{4}{x^2+2x}\right):\left(\frac{x^2-2x+1}{x^2-x}\right)=\left(\frac{x}{x+2}-\frac{4}{x\left(x+2\right)}\right):\left(\frac{\left(x-1\right)^2}{x\left(x-1\right)}\right)\)
\(=\frac{x^2-4}{x\left(x+2\right)}:\frac{x-1}{x}=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}.\frac{x}{x-1}=\frac{x-2}{x}.\frac{x}{x-1}=\frac{x-2}{x-1}\)
b) Để A > 1
=> \(\frac{x-2}{x-1}>1\)
=> \(\frac{x-2}{x-1}-1>0\Rightarrow\frac{-1}{x-1}>0\Rightarrow x-1< 0\Rightarrow x< 1\)
Vậy để A > 1 thì x < 1 và x \(\ne-2;x\ne1;x\ne0\)
c) Ta có \(A=\frac{x-2}{x-1}=\frac{x-1-1}{x-1}=1-\frac{1}{x-1}\)
Để A \(\inℤ\Rightarrow\frac{1}{x-1}\inℤ\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)\Rightarrow x-1\in\left\{1;-1\right\}\)
Khi x - 1 = 1 => x = 2( tm)
Khi x - 1 =-1 => x = 0 (loại)
Vậy x = 2 thì A nguyên
Lời giải:
ĐK: $x\neq \pm 2$
a) \(P=\frac{x(x-2)}{(x-2)(x+2)}=\frac{x}{x+2}\)
b)
\(P(x+2)\leq 3x-5\)
\(\Leftrightarrow \frac{x}{x+2}.(x+2)\leq 3x-5\Leftrightarrow x\leq 3x-5\Leftrightarrow x\geq \frac{5}{2}\)
Kết hợp với ĐKXĐ suy ra $x\geq \frac{5}{2}$