\(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

x + \(\sqrt{x-\frac{1}{4}}\) = ( \(\sqrt{x-\frac{1}{4}}\)\(\frac{1}{2}\))2

Cứ tiếp tục vậy sẽ ra đáp án 

23 tháng 8 2017

Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp. 
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31. 
2) Tóm tắt thôi nhé. 
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10 
Số mới sau khi đổi chỗ là 10b + a 
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36 
được a = 7; b = 3. Vậy số cần tìm là 73. 
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5 
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a 
=> 9a = 1782 => a = 198 => Số ban đầu là 1985

18 tháng 10 2015

Áp dụng BĐT Cô si với hai số không âm 

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge2\sqrt{\frac{1}{\sqrt{x}\sqrt{y}}}\Leftrightarrow6\ge2\sqrt{\frac{1}{\sqrt{xy}}}\Leftrightarrow\frac{1}{\sqrt{xy}}\le9\)

Vậy MAx A = 9  khi x = y=1/9  

8 tháng 10 2019

2.\(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{2}\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(3\right)^2\)

\(\Leftrightarrow x=9\)

vậy x=9 

mình chỉ giúp bạn được vậy thui :)

chúc bạn học tốt nha:)))

21 tháng 7 2017

1.

ĐK \(a\ge0;a\ne1\)

Ta có \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)

\(=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}=4a\)

2. Với \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\Rightarrow A=\frac{4\sqrt{6}}{2+\sqrt{6}}\)

Để \(\sqrt{A}>A\Rightarrow\sqrt{4a}>4a\Rightarrow2\sqrt{a}-4a>0\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{a}>0\\1-2\sqrt{a}>0\end{cases}\Rightarrow\hept{\begin{cases}a>0\\a>\frac{1}{4}\end{cases}\Rightarrow}a>\frac{1}{4}}\)

Vậy để \(\sqrt{A}>A\)thì \(a>\frac{1}{4};a\ne1\)

27 tháng 7 2018

Bài khó quá mình không biết làm 

Thông cảm nha!!

27 tháng 7 2018

khó quá 

15 tháng 10 2016

1/ ĐKXĐ : \(0\le a\ne1\)

2/ \(A=\left(\frac{\sqrt{a}-2}{a-1}-\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right).\frac{\left(1-a\right)^2}{2}\)

\(=\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}+2\right)\left(a-1\right)}{\left(a-1\right)\left(\sqrt{a}+1\right)^2}.\frac{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^3}.\frac{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)^2}{2}\)

\(=-\sqrt{a}\left(\sqrt{a}-1\right)\)

3/ \(A=-\sqrt{a}\left(\sqrt{a}-1\right)=-a+\sqrt{a}\)

Đặt \(t=\sqrt{a},t\ge0\)thì \(A=-t^2+t=-\left(t-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Max A = 1/4 khi t = 0 => a = 1/4