K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2019

ĐK: \(x\ge0;x\ne\left\{9;25\right\}\)

\(P=\dfrac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{\sqrt{x}-5}\)

\(=\dfrac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{8\sqrt{x}-x-31-x+25+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

b/ \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-5}< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-5}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+5}{\sqrt{x}-5}< 0\Leftrightarrow\dfrac{6}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\sqrt{x}-5< 0\Rightarrow x< 25\)

Vậy để \(P< 1\) thì \(0\le x< 25;x\ne9\)

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

26 tháng 8 2021

a. ĐKXĐ: \(x>0\)

\(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{x+\sqrt{x}}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b. Để \(P=-1\) thÌ  \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=-1\) 

\(\Leftrightarrow x+\sqrt{x}+1=-\sqrt{x}\)

\(\Leftrightarrow x+2\sqrt{x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\)

\(\Leftrightarrow\sqrt{x}+1=0\)

\(\Leftrightarrow\sqrt{x}=-1\) ( vô lý )

Vậy không có x thỏa mãn ycbt

c. Ta có \(x=\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8-8\sqrt{5}+8}{5-1}=\dfrac{16}{4}=4\)

Thay x=4 vào P, ta được

\(P=\dfrac{4+\sqrt{4}+1}{\sqrt{4}}=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

d. \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) \(\Rightarrow P-3=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-3\)

\(\Rightarrow P-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Mà \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow P-3\ge0\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(P_{min}=3\) khi \(x=1\)

 

 

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Thay x=9 vào A, ta được:

\(A=\dfrac{3-1}{3+1}=\dfrac{1}{2}\)

c: Ta có: P=AB

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}+\dfrac{5-x}{x-1}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{6}{\sqrt{x}+1}\)

3 tháng 7 2023

a

ĐK: \(1< x\ne10\)

Đặt \(t=\sqrt{x-1}\Rightarrow x=t^2+1;0< t\ne3\)

Khi đó:

\(P=\left(\dfrac{t}{3+t}+\dfrac{t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t^2-3t}-\dfrac{1}{t}\right)\\ =\left(\dfrac{t\left(3-t\right)+t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t\left(t-3\right)}-\dfrac{1}{t}\right)\\ =\dfrac{3t+9}{\left(3-t\right)\left(3+t\right)}:\dfrac{3t+1-t+3}{t\left(t-3\right)}=\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}:\dfrac{2t+4}{t\left(t-3\right)}\\ =\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}.\dfrac{t\left(t-3\right)}{2t+4}=\dfrac{-3t}{2t+4}=\dfrac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b

Ta có:

\(x=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\left(\sqrt{5}+1\right)\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\sqrt{5}\left|1-\sqrt{2}\right|-\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\\ =\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\dfrac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\dfrac{1}{2}\)

a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)

c: Để P=1/2 thì căn x-5/căn x+5=1/2

=>2 căn x-10=căn x+5

=>căn x=15

=>x=225