Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10\)
b) P = 0
=> \(5x^2+5y^2+10=0\)
\(\Rightarrow x^2+y^2=-2\)
Mà: \(x^2+y^2\ge0\)
=> Ko có cặp (x; y) nào thỏa mãn P = 0
P = 10
=> \(5x^2+5y^2+10=10\)
=> \(x^2+y^2=0\)
Mà: \(x^2+y^2\ge0\)
=> x = 0; y = 0
a) Ta có: \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
\(=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(=10\)
a: \(P=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(=5x^2+5y^2+10\)
b: Để P=0 thì \(5x^2+5y^2+10=0\)
=>\(x^2+y^2+2=0\)(loại)
Để P=10 thì \(5x^2+5y^2=0\)
=>x=y=0
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
a)N=15y3+5y2-y5-5y2-4y3-2y=(15y3-4y3)+(5y2-5y2)-y5-2y=11y3-y5-2y
M cũng tương tự(ghép các đa thức đồng dạng vs nhau)
b) cộng 2 biểu thức rồi bỏ ngoặc(nếu trc ngoặc là dấu âm thì đổi dấu các hạng tử trong ngoặc còn nếu trc ngoặc là dấu dương thì dấu trong ngoặc giữ nguyên), sau đó cũng ghép các đa thức đồng dạng vs nhau là ra
a) M=\(8y^5-3y+1\)
N=\(-y^5+11y^3-2y\)
b) N+M=\(\left(8y^5-3y+1\right)\)+ \(\left(-y^5+11y^3-2y\right)\)
N+M= \(7y^5\)\(+11y^3\)\(-5y\)\(+1\)
M-N=\(\left(8y^5-3y+1\right)\) \(-\)\(\left(-y^5+11y^3-2y\right)\)
M-N=\(9y^5\)\(-11y^3\)\(-y\)\(+1\)
N-M=\(\left(-y^5+11y^3-2y\right)\) \(-\) \(\left(8y^5-3y+1\right)\)
N-M=\(-9y^5\)\(+11y^3\)\(+y\)\(-1\)