Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)
a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)
\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)
\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)
\(=x^8-16\)
b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)
\(=3x^2+4x-3x^3+3x\)
\(=-3x^3+3x^2+7x\)
Cho biểu thức: bn viết ko rõ lắm , bn xem đề mk viết lại có đg ko nhé , r mk lm cho
\(a=\dfrac{2x}{x+3}-\dfrac{x+1}{3-x}-\dfrac{3-11x}{x^2-9}\)
Bài 1:
\(A=\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{2x}{x^2-y^2}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{4x^3}{x^4-y^4}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{8x^7}{x^8-y^8}+\dfrac{8x^7}{x^8+y^8}\)
\(A=\dfrac{16x^{15}}{x^{16}-y^{16}}\)
a, <=>y2-32 <=> y2 -9 (hằng đẳng thức số 3)
b, <=> m3+n3 ( hằng đẳng thức số 6)
c, <=> 23-a3 (__________________số 7)
d, <=> (a-b-c-a+b-c )( a-b-c+a-b+c)
<=> -2c*2a= -4ac
e, <=> (a-x-y-a-x+y) [(a-x-y) 2+(a-x-y)(a+x-y)+(a+x-y)2]
(Nhân phá ngoặc) -)
d <=> (1-x2)[(1+x2)2-x2)
<=> (1-x2)(1+2x2)
<=> 1+2x2-x2-2x4
<=> 1+x2-2x4
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)
= 2 x + 1 − 3 − 4 x + 2 2 x − 1 2 x + 1 . 2 x + 1 x = − 2 x 2 x − 1 2 x + 1 . 2 x + 1 x = − 2 2 x − 1
Vậy N = 2 1 − 2 x
Đáp án cần chọn là B