Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}+\frac{x^2+3}{x^4+4x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+3x^2+x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^2\left(x^2+3\right)+x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\)
\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{0+x^4+x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{x^2}{x^4-x^2+1}\)
a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)
b) Với \(M=\frac{1}{4}\)ta có :
\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)
\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)
a, Ta có : \(A=\frac{1}{x+2}-\frac{2x}{4-x^2}+\frac{3}{x-2}\)
\(=\frac{1}{x+2}-\frac{2x}{\left(2-x\right)\left(x+2\right)}+\frac{3}{x-2}\)
\(=\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra : \(M=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{3x+2}\)
\(=\frac{2\left(3x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}=\frac{2}{x-2}\)
Rút gọn M
\(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\cdot\left(x^4+\frac{\left(1-x^2\right)\left(1+x^2\right)}{1+x^2}\right)\)
\(=\frac{x^2-2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\cdot\left(x^4-x^2+1\right)\)
\(=\frac{x^2-2}{x^2+1}\)
\(M_{min}\Leftrightarrow\frac{x^2-2}{x^2+1}\) có giá trị nhỏ nhất
Biến đổi:\(M=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
M có giá trị nhỏ nhất khi \(\frac{3}{x^2+1}\) có giá trị lớn nhất
\(\Rightarrow x^2+1\) có giá trị nhỏ nhất
Mà \(x^2\ge0\Rightarrow x^2+1\ge1\) dấu "=" xảy ra tại x=0
Vậy.........................................
a)\(\text{ĐKXĐ:}\hept{\begin{cases}x^3-4x\ne0\\6-3x\ne0\\x+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\mp2\end{cases}}\)
\(M=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right].\frac{x+2}{6}\)
\(=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{1}{x+2}\)
b) /x/= \(\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
*\(\text{Với }x=\frac{1}{2}\text{ta có pt:}\)
\(M=\frac{1}{x+2}=\frac{1}{\frac{1}{2}+2}=\frac{2}{5}\)
*\(\text{Với x= -1/2 ta có pt:}\)
\(M=\frac{1}{x+2}=\frac{1}{-\frac{1}{2}+2}=\frac{2}{3}\)
a) = (\(\frac{x^2}{x\left(x^2\right)-4}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\)):(x-2+\(\frac{10-x^2}{x+2}\))
=(\(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}+\frac{-6}{3\left(x-2\right)}+\frac{1}{x+2}\)) :(x-2+\(\frac{10-x^2}{x+2}\))
=(\(\frac{3x^2-6x\left(x+2\right)+\left(x-2\right)3x}{3x\left(x-2\right)\left(x+2\right)}\)) :(\(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\))
=(\(\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}\)):(\(\frac{x^2-4+10-x^2}{x+2}\))
=\(\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)
=\(\frac{-6}{\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)
=\(\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
=\(\frac{-1}{x-2}\)
Vậy M=\(\frac{-1}{x-2}\)
b)Vì /x/ =1/2 nên x=1/2 hoặc x=-1/2Thay x=1/2 vào M ta được;
\(\frac{-1}{\frac{1}{2}-2}\)=\(\frac{2}{3}\)
Thay x=-1/2 vào M ta được:
\(\frac{-1}{-\frac{1}{2}-2}\)=\(\frac{2}{5}\)
Vậy \(M\in\)\(\hept{\begin{cases}\\\end{cases}\frac{2}{5};\frac{2}{3}}\)khi /x/=1/2
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)
\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).
Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).