Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
a,Đk: a≥0 ; a khác 4
H=\(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\) -\(\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\) -\(\dfrac{1}{\sqrt{a}-2}\)
= \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
=\(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
=\(\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
=\(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
=\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b, Để H<2
<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) <2
<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -2<0
<=>\(\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\) <0
<=>\(\dfrac{-\sqrt{a}}{\sqrt{a}-2}\) <0
<=>\(\left\{{}\begin{matrix}-\sqrt{a}< 0\\\sqrt{a}-2>0\end{matrix}\right.\) ( vì \(\sqrt{a}>0< =>-\sqrt{a}< 0\)
<=> a>4
vậy để H <2 khi a>4
c, Ta có a\(^2\) +3a=0
<=> a(a+3)=0
<=>a=0 hoặc a=-3(vô lí)
+ Với a=0 <=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =\(\dfrac{0-4}{0-2}\) =2
d, Để H=5
<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =5
<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -5=0
<=>\(\dfrac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}\) =0
<=>-4\(\sqrt{a}\) +6=0
<=> a=\(\dfrac{9}{4}\)
a: \(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để H<2 thì H-2<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)
=>căn a-2>0
hay a>4
d: Để H=5 thì căn a-4=5 căn a-10
=>-4 căn a=-6
=>căn a=3/2
hay a=9/4
a) \(H=\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right):\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{1-\sqrt{a}}{\left(\sqrt{a}-1\right)^2}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)
\(H=\dfrac{a-\sqrt{a}-2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)
\(H=\dfrac{-a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\)
\(H=\sqrt{a}\)
b) Thay x = 2023 vào ta có:
\(H=\sqrt{2023}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Thay x=0 vào A, ta được:
\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)
\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)
\(=\dfrac{11}{3}-2-1\)
\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)
a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)
\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)
\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)
b) \(A=-2\sqrt{a}>-6\)
\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)
c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)
\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)
Chắc đề em gõ bị lỗi nhỏ :) Cô sẽ sửa nhé :)
a. ĐK: \(a\ge0,a\ne4\)
\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{a+\sqrt{a}-6}=\frac{a-4-4-\sqrt{a}-3}{a+\sqrt{a}-6}\)
\(=\frac{a-\sqrt{a}-12}{a+\sqrt{a}-6}=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
b. \(H< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\Leftrightarrow\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow x>4\)
Tương tự với các câu còn lại nhé :)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)
b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
a. \(ĐKXĐ:a\ge0,a\ne2\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-4-8-\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(a-4\sqrt{a}\right)+\left(3\sqrt{a}-12\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-4\right)+3\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b. Mk nghĩ là H < 2 chứ
\(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)
\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{-\sqrt{a}}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
c. \(a^2+3a=0\Leftrightarrow a\left(a+3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\left(n\right)\\a=-3\left(l\right)\end{matrix}\right.\)
Thay \(a=0\) và H ta được:
\(\dfrac{0-4}{0-2}=2\)
d. \(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=5\Leftrightarrow\dfrac{\sqrt{a}-2-2}{\sqrt{a}-2}=5\Leftrightarrow1-\dfrac{2}{\sqrt{a}-2}=5\)
\(\Leftrightarrow\dfrac{2}{\sqrt{a}-2}=-4\Leftrightarrow-4\sqrt{a}+8=2\Leftrightarrow-4\sqrt{a}=-6\Leftrightarrow\sqrt{a}=\dfrac{3}{2}\Leftrightarrow a=\dfrac{9}{4}\)