Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
\(a=\frac{x^2+3}{x-2}\) ko xác định \(\Leftrightarrow x-2=0\)
\(\Rightarrow x=0+2\)
\(\Rightarrow x=2\)
Biểu thức a không xác định được tức là phân số đó không xác định được
\(\Rightarrow\)\(x=2\)
Lời giải:
a) Để biểu thức $A$ luôn xác định thì \(x-2\neq 0\Leftrightarrow x\neq 2\)
b)
$A$ nhận giá trị âm khi mà \(A< 0\Leftrightarrow \frac{x^2+3}{x-2}< 0\). Mà $x^2+3>0$ với mọi $x$ nên suy ra \(x-2< 0\Leftrightarrow x< 2\)
Tức là với những giá trị $x< 2$ thì $A$ nhận giá trị âm.
c)
\(A=\frac{x^2+3}{x-2}=\frac{x^2-2x+2x-4+7}{x-2}=\frac{x(x-2)+2(x-2)+7}{x-2}\)
\(=x+2+\frac{7}{x-2}\)
Để \(A\in\mathbb{Z}\Leftrightarrow x+2+\frac{7}{x-2}\in\mathbb{Z}\Leftrightarrow \frac{7}{x-2}\in\mathbb{Z}\Leftrightarrow 7\vdots x-2\)
\(\Rightarrow x-2\in\left\{\pm 1; \pm 7\right\}\)
\(\Rightarrow x\in \left\{1; 3; 9; -5\right\}\)
\(f\left(x\right)=x^4+6x^3+11x^2+6x=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\) là số nguyên nên \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích của \(4\) số nguyên liên tiếp nên trong đó có nhất một số chia hết cho \(4\), một số chia hết cho \(3\), một số chia hết cho \(2\) nhưng không chia hết cho \(4\) nên \(f\left(x\right)\) chia hết cho \(2.3.4=24\).
Để \(f\left(x\right)\) chia hết cho \(5\) thì \(x,x+1,x+2,x+3\) có một số chia hết cho \(5\).
Có \(72=2.4.9\) nên để \(f\left(x\right)\) chia hết cho \(72\) thì trong \(4\) số \(x,x+1,x+2,x+3\) có một số chia hết cho \(9\) hoặc hai số chia hết cho \(3\), suy ra \(x\) chia hết cho \(3\).
Chỉ có x=0 Khi đó A=02-6.0+9=1-0+9=10
Vậy A=10