\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\pm1;x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow A=\left(\frac{-1}{x-1}+\frac{2}{x+1}+\frac{5-x}{x^2-1}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(\Leftrightarrow A=\left[\frac{-x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2x-2}{\left(x-1\right)\left(x+1\right)}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(\Leftrightarrow A=\frac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2}\)

\(\Leftrightarrow A=\frac{2\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}=1\)

vậy \(A=1\left(x\ne\pm1;x\ne\frac{1}{2}\right)\)

13 tháng 8 2020

\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)

\(A=\left(\frac{x+1}{\left(1-x\right)\left(x+1\right)}+\frac{2\left(1-x\right)}{\left(x+1\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)

\(A=\left(\frac{x+1}{\left(1-x\right)\left(x+1\right)}+\frac{2\left(1-x\right)}{\left(x+1\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)

\(A=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)

\(A=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)

\(A=\frac{2}{x^2-1}:\frac{1-2x}{x^2-1}.\)

\(A=\frac{2}{x^2-1}\cdot\frac{^2-1}{1-2x}=\frac{2}{1-2x}\)ĐK: x khác 1/2

15 tháng 3 2021

a,\(P=\frac{x^2+x}{x^2-2x+1}\div\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\frac{x+1}{x\left(x-1\right)}=\frac{x^2+x}{\left(x-1\right)^2}\times\frac{x\left(x-1\right)}{x+1}\)

\(=\frac{x^2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2}{x-1}\)

b,a,Để \(P\le1\Rightarrow\frac{x^2}{x-1}\le1\)

\(\Leftrightarrow\frac{x^2}{x-1}-1\le0\)

\(\Leftrightarrow\frac{x^2-x+1}{x-1}\le0\)

\(\Leftrightarrow x-1\le0\)

\(\Leftrightarrow x\le1\)

\(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\cdot\dfrac{2-x}{x}\)

\(=\dfrac{x+2+2x+x-2}{-\left(2-x\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{-\left(x+2\right)\cdot x}=\dfrac{-4}{x+2}\)

27 tháng 2 2020

ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)

\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)

\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3x-2\right)}{1-2x}\)

27 tháng 2 2020

\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)

\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{2x+4}{1-2x}\)

\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)

Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)

Với 1-2x=1 => x= 0(TMĐKXĐ)

với 1-2x=-1 => x=1(loại)

với 1-2x=5 => x=-2(tmđkxđ)

với 1-2x=-5 => x=3(tmđkxđ)

Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

20 tháng 1 2021

\(A=\left(\frac{x^2-16}{x-4}+1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+5\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x^2+x-2x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x+3}{x+1}\right)=\frac{x+3}{\left(x+5\right)\left(x+1\right)}\)

20 tháng 1 2021

Sai đề ở chỗ \(\left(\frac{x^2-16}{x-4}+1\right)\)thành -1

26 tháng 1 2017

\(A=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{-x-1}{\left(1-x\right)\left(x+1\right)}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-2x-1}{\left(1-x\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-\left(2x+1\right)}{\left(1-x\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(A=\frac{-1}{1-x}.\frac{x+1}{1}\)

\(A=\frac{-x-1}{1-x}\)

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)