Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\begin{cases}x\ne0\\x\ne-5\end{cases}\)
b)\(A=\frac{x^2+2x}{2x+10}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2.\left(x+5\right)}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x}{2x.\left(x+5\right)}+\frac{2\left(x+5\right)^2}{2x\left(x+5\right)}-\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x+2x^2+20x+50-50+5x}{2x\left(x+5\right)}=\frac{3x^2+27x}{2x\left(x+5\right)}=\frac{3x.\left(x+9\right)}{2x\left(x+5\right)}=\frac{3x+27}{2x+10}\)
c)Để A=1 thì: \(\frac{3x+27}{2x+10}=1\Rightarrow3x+27=2x+10\Leftrightarrow x=-17\)(nhận)
Vậy x=-17 thì A=1
a. ĐK \(\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
b. \(A=\frac{x^2+2x}{2x\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
Để \(A=1\Rightarrow\frac{x-1}{2}=1\Rightarrow x=3\)
Để \(A=-3\Rightarrow\frac{x-1}{2}=-3\Rightarrow x=-5\)
Vậy với x=3 thì A=1 ; với x=-5 thì A=-3
a, ĐKXĐ của B: \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
b, \(B=\frac{\left(x^2+2x\right)x+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
\(B=0\Rightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Rightarrow x=1\)(thỏa mãn điều kiện xác định)
\(B=\frac{1}{4}\Rightarrow\frac{x-1}{2}=\frac{1}{4}\Rightarrow x-1=\frac{1}{2}\Rightarrow x=\frac{3}{2}\)(thỏa mãn)
c, \(B>0\Rightarrow\frac{x-1}{2}>0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy với x > 1 thì B > 0
\(B< 0\Rightarrow\frac{x-1}{2}< 0\Rightarrow x-1< 0\Rightarrow x< 1\)
Vậy với x < 1 và \(x\ne\left\{-5;0\right\}\) thì B < 0
a) ĐKXĐ : \(x\ne0;-5\)
b) \(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(A=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(A=\frac{x^3+2x^2+x^2-50+20-5x}{2x\left(x+5\right)}\)
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
\(A=\frac{x-1}{2}\)
c) \(A=1\Leftrightarrow\frac{x-1}{2}=1\Leftrightarrow x=3\)( thỏa )
\(A=-3\Leftrightarrow\frac{x-1}{2}=-3\Leftrightarrow x=-5\)( loại )
a, hông biết
b,
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x.\left(x+5\right)}\)
\(A=\frac{x^2+2x}{2x\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x+\left(x+5\right)}\)
\(A=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right).\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x.\left(x+5\right)}\)
\(A=\frac{x\left(x^2+2x\right)+2\left(x+5\right).\left(x-5\right)+50-5x}{2x.\left(x+5\right)}\)
\(A=\frac{x^3+2x+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
\(A=\frac{x^3+2x^2+2x^2-50+50-5x}{2x.\left(x+5\right)}\)
\(A=\frac{x^3+4x^2-5x}{2x.\left(x+5\right)}\)
\(A=\frac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(A=\frac{x.\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(A=\frac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(A=\frac{x-1}{2}\)
c,
\(\left[{}\begin{matrix}\frac{x-1}{2}=1\\\frac{x-1}{2}=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x-1=1.2=2\\x-1=-3.2=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2+1=3\\x=-6+1=-5\end{matrix}\right.\)
Vậy \(x\in\left\{3;-5\right\}\)