Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)
Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x-2\sqrt{x}+1}{x-1}\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)
a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)
b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)
mà \(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)
nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)
mà \(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1(nhận)
Vậy: để M>0 thì x>1