Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
a. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\left(\frac{a-c}{b-d}\right)\left(\frac{a-c}{b-d}\right)=\left(\frac{a-c}{b-d}\right)^2\)
\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)(ĐPCM)
a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
Áp dụng TCDSBN ta có :
\(k=\frac{a-b}{c-d}\)\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2\)(1)
Ta lại có : \(k=\frac{a}{c};k=\frac{b}{d}\Rightarrow k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)(2)
Từ (1) ; (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)(đpcm)
b ) Đề sai : điều cần cm là \(\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2007a}{2007c}=\frac{2008b}{2008c}=\frac{2007a+2008b}{2007c+2008d}=\frac{2007a-2008b}{2007c-2008d}\)
\(\Rightarrow\left(2007a+2008b\right)\left(2007c-200d\right)=\left(2007a-2008b\right)\left(2007c+2008d\right)\)
\(\Rightarrow\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)(đpcm)
A=a/2018-c +b/2018-a +c/2018-b
A= a/a+b + b/b+c + c/c+a
Nhận thấy: a/a+b< a/a+b+c; b/b+c<b/a+b+c; c/c+a<c/a+b+c
Do đó A= a/a+b + b/b+c + c/c+a < a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c=1
=>A>1(1)
áp dụng t/c:a/b<1=>a/b<a+n/b+n(a,b,n khác 0), ta có:
a/a+b < a+c/a+b+c ; b/b+c < b+a/b+c+a ; c/c+a < c+b/c+a+b
Do đó :A= a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c= 2(a+b+c)/a+b+c=2
=>A<2(2)
từ (1);(2)=>1<A<2=> A không thuộc Z=>ĐPCM. chúc bạn học tốt
#)Giải :
Ta có :
Gọi biểu thức trên là A
Thay a + b + c = 2018 vào A :
\(A=\frac{a}{2018-c}+\frac{b}{2018-a}+\frac{c}{2018-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
#~Will~be~Pens~#
Câu hỏi của Huỳnh Phước Lộc : Bạn tham khảo