K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

\(a,A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2+2x\)

\(\Rightarrow A=x^2-4-x^2+2x-1+2x\)

\(\Rightarrow A=4x-5\)

b, thay x=2 vào ta được

\(A=4x-5=4.2-5=8-5=3\)

10 tháng 12 2021

A = ( x - 2 )( x + 2 ) - ( x - 1)2 + 2x

a) A = x2 - 4 - ( x2 - 2x + 1 )2 + 2x

A = x2 - 4 - 2x2 + 4x - 2 + 2x

A = -x2 + 6x - 6

b) Ta có x = 2

=> -x2 + 6x - 6 = - 4 + 12 - 6

A = 2

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

31 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

 

31 tháng 12 2021

mik nhập nhầm bài nha bạn
 Làm lại đi bạn

6 tháng 12 2021

\(a.A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\\ \Rightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

b, thay x=1\(\Rightarrow A=\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{-1.3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

9 tháng 3 2022

chịu

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). 

29 tháng 12 2022

\(A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\left(x\ne2;x\ne-2\right)\)

\(a,A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\)

\(=\left[\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)

\(=\left[\dfrac{x^2+2x+12-x^2+2x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)

\(=\dfrac{4x+12}{\left(x-2\right)\left(x+2\right)}:\dfrac{4}{x-2}\)

\(=\dfrac{4\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{4}\)

\(=\dfrac{x+3}{x+2}\)

\(b,x=-1\Rightarrow A=\dfrac{\left(-1\right)+3}{\left(-1\right)+2}=2\)

\(c,A=\dfrac{x+3}{x+2}=\dfrac{x+2+1}{x+2}=1+\dfrac{1}{x+2}\)

\(A\in Z\Leftrightarrow x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{-1;-3\right\}\) (thỏa mãn điều kiện)

17 tháng 12 2021

a, điều kiện xác định: x2 - 4 ≠ 0    

                           ⇔ x2 ≠ 4

                           ⇔x ≠ 2 và x ≠ -2

b,  A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

       =\(\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)

       = \(\dfrac{x^2-x^2-2x+2x-4}{x^2-4}\)

       = \(\dfrac{x^2-4}{x^2-4}\)

       = 1

c, x=1    ⇒ A= \(\dfrac{1^2}{1^2-4}-\dfrac{1}{1-2}+\dfrac{2}{1+2}\)

                    = \(\dfrac{4}{3}\)

17 tháng 12 2021

a) Điều kiện xác định:
A\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.⇔\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) Rút gọn:
A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)[do MTC là (x-2)(x+2)].
A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-\left(x^2+2x\right)+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)