K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

b: Để A<=3/căn x thì \(\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}< =\dfrac{3}{\sqrt{x}}\)

=>\(\dfrac{x-2\sqrt{x}-1-3x+6\sqrt{x}-3}{\left(\sqrt{x}-1\right)^2}< =0\)

=>\(-2x+4\sqrt{x}-4< =0\)

=>\(x-2\sqrt{x}+2>=0\)(luôn đúng)

a: \(P=\dfrac{x+\sqrt{x}}{x-\sqrt{x}}\cdot\dfrac{3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}-1}\)

b: Để P=1 thì \(\sqrt{x}-1=3\)

hay x=16

15 tháng 5 2022

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{3}\)

\(P=\left(\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{3}\)

\(P=\left(\dfrac{x\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}-1\right)}\right).\dfrac{3}{\sqrt{x}+1}\)

\(P=\dfrac{3}{\sqrt{x}-1}\)

\(P=1\)

\(\Leftrightarrow1=\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow\sqrt{x}-1=3\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\left(tm\right)\)

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!

 

6 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)

\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)

9 tháng 7 2021

`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`

`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`

`B=2/(3-sqrtx)`

`B>1/2`

`<=>2/(3-sqrtx)-1/2>0`

`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`

`<=>(sqrtx+1)/(2(3-sqrtx))>0`

Mà `sqrtx+1>=1>0`

`<=>2(3-sqrtx)>0`

`<=>3-sqrtx>0`

`<=>sqrtx<3`

`<=>x<9`

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)^2}\)

\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1}{x-1}\)

\(=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

b) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}+1-6\sqrt{x}=0\)

\(\Leftrightarrow-5\sqrt{x}+1=0\)

\(\Leftrightarrow-5\sqrt{x}=-1\)

\(\Leftrightarrow\sqrt{x}=\dfrac{1}{5}\)

hay \(x=\dfrac{1}{25}\)(nhận)

Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=\dfrac{1}{25}\)

13 tháng 5 2021

`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`

14 tháng 5 2023

`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`

   `A=4/[12-4]=1/2`

Với `x > 0,x ne 1` có:

`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`

`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`

`b)B=2/5A`

`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`

`<=>5\sqrt{x}-5=\sqrt{x}`

`<=>\sqrt{x}=5/4`

`<=>x=25/16` (t/m)