Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)
a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)
a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)
a) Ta có: \(A=\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{x^2-4}\left(x\ne\pm2\right)\)
\(A=\dfrac{x\left(x-2\right)-2x\left(x+2\right)+x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x^2-2x-2x^2-4x+x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{-6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{-6}{x+2}\)
b) Để A có giá trị nguyên thì \(x+2\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Từ đó, ta có:
\(x+1=1\Leftrightarrow x=0\) ( nhận )
\(x+1=-1\Leftrightarrow x=-2\) ( loại )
\(x+1=2\Rightarrow x=1\) ( nhận )
\(x+1=-2\Rightarrow x=-3\) ( nhận )
\(x+1=3\Rightarrow x=2\) ( loại )
\(x+1=-3\Rightarrow x=-4\) ( nhận )
\(x+1=6\Rightarrow x=5\) ( nhận )
\(x+1=-6\Rightarrow x=-7\) ( nhận )
Vậy để A nhận giá trị nguyên thì \(x\in\left\{-7;-4;-3;0;1;5\right\}\)
\(a,\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{x^2-4}\)
\(=\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-2x^2-4x+x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-6x+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-6}{x-2}\)
\(b,\) Để \(A\in Z\) thì \(\dfrac{-6}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Vậy \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
cảm ơn bạn nhé