K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2023

\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-...-\dfrac{1}{5^{99}}+\dfrac{1}{5^{100}}\)

\(=-\dfrac{1}{5}\left(1-\dfrac{1}{5}\right)-\dfrac{1}{5^3}\left(1-\dfrac{1}{5}\right)-...-\dfrac{1}{5^{99}}\left(1-\dfrac{1}{5}\right)\)

\(=\left(1-\dfrac{1}{5}\right)\left(-\dfrac{1}{5}-\dfrac{1}{5^3}-...-\dfrac{1}{5^{99}}\right)\)

\(=\left(\dfrac{1}{5}-1\right)\left(\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\right)\)

Mặt khác:

\(F=\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)

\(25F=5+\dfrac{1}{5}+...+\dfrac{1}{5^{97}}\)

\(25F-F=5-\dfrac{1}{5^{99}}\)

\(F=\dfrac{5-\dfrac{1}{5^{99}}}{24}\)

\(\Rightarrow A=\left(\dfrac{1}{5}-1\right).F\)

\(=\dfrac{-4}{5}.\dfrac{5-\dfrac{1}{5^{99}}}{24}=\dfrac{\dfrac{1}{5^{99}}-5}{5.6}=\dfrac{\dfrac{1}{5^{100}}-1}{6}\)

2 tháng 3 2017

giup mk với

eoeonhonhunglolanghelp

3 tháng 3 2017

hình như đề sai. cái phân số đầu tiên ấy

14 tháng 10

 

????

 

19 tháng 10 2023

\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)

\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)

29 tháng 10 2023

-_-

11 tháng 2 2018

\(5D=1+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+...+\dfrac{1}{6.5^{99}}\)

\(6D=\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{6.5^{100}}\)

\(D=\dfrac{\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{36.5^{100}}}{6}\)

Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

=100

Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)

\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{8}{\dfrac{1}{5}}=40\)

\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)

22 tháng 6 2022

a) P=23+14+35−745+59+112+135 

14 tháng 7 2022

P=23+14+35−745+59+112+135 

    P 

P ==(23+14+112)+(59−745)+35+135=1+45+35+135=2135.

b)

Q=(562)+(3474+54)+(1585165Q=(5−34+15)−(6+74−85)−(2−54+165))

Q=(5−6−2)+(−34−74+54)+(15−85−165)=−(3+54+235) 

=−(3+114+435)=−81720.

22 tháng 6 2022

a) A=35.67+37.35−27.35
=35⋅(67+37−27)=35
b) B=(−13⋅25+−29⋅25+25⋅119)⋅52
=(−13−29+119)⋅25⋅52=−13+(119−29)=−12.
c) C=(−45+57)⋅32+(−15+27)⋅32=(−45+57+−15+27)⋅32=((−45+−15)+(57+27))⋅32=0.
d) D=49:(115−1015)+49:(222−522)
=49:−35+49:−322=49⋅−53+49.−223

13 tháng 7 2022

a) \mathrm{A}=\dfrac{3}{5}. \dfrac{6}{7}+\dfrac{3}{7}. \dfrac{3}{5}-\dfrac{2}{7}. \dfrac{3}{5}

b)  \mathrm{B} =\left(-13 \cdot \dfrac{2}{5}+\dfrac{-2}{9} \cdot \dfrac{2}{5}+\dfrac{2}{5} \cdot \dfrac{11}{9}\right) \cdot \dfrac{5}{2}
=\left(-13-\dfrac{2}{9}+\dfrac{11}{9}\right) \cdot \dfrac{2}{5} \cdot \dfrac{5}{2}=-13+\left(\dfrac{11}{9}-\dfrac{2}{9}\right)=-12 .
c) \mathrm{C} =\left(\dfrac{-4}{5}+\dfrac{5}{7}\right) \cdot \dfrac{3}{2}+\left(\dfrac{-1}{5}+\dfrac{2}{7}\right) \cdot \dfrac{3}{2} =\left(\dfrac{-4}{5}+\dfrac{5}{7}+\dfrac{-1}{5}+\dfrac{2}{7}\right) \cdot \dfrac{3}{2}=\left(\left(\dfrac{-4}{5}+\dfrac{-1}{5}\right)+\left(\dfrac{5}{7}+\dfrac{2}{7}\right)\right) \cdot \dfrac{3}{2}=0 .
d) \mathrm{D}=\dfrac{4}{9}:\left(\dfrac{1}{15}-\dfrac{10}{15}\right)+\dfrac{4}{9}:\left(\dfrac{2}{22}-\dfrac{5}{22}\right)

16 tháng 9 2017

a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=1-1+\dfrac{1}{72}\)

\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)

b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)

\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)

\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)

\(=-\left(-\dfrac{173}{1287}\right)\)

\(=\dfrac{173}{1287}\)

c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{-49}{50}\)